NASA's Voyager probes have been traveling through space for nearly 46 years. Here are 18 groundbreaking photos from their incredible mission.

  • Nearly 46 years after their launch, Voyager 1 and 2 will likely soon reach the end of their scientific mission . 
  • NASA recently lost contact with Voyager 2 after sending it a bad command by mistake. 
  • Here are 18 pictures the probes took over the course of their forty-plus-year journey. 

Insider Today

The Voyager probes are pioneers of science, making it farther into space than any other manufactured object. But now, they face a terminal problem: their power is running out.

The twin probes were originally sent on a four-year mission to tour the solar system, but they exceeded all expectations and are still going nearly 46 years later. That makes them NASA's longest-lived mission.

Scientists are now doing their best to  keep the probes going for as long as possible. They recently found a clever hack to extend Voyager 2's life for another three years and plan to do the same with Voyager 1.

But these are old machines and NASA is constantly scrambling to fix mistakes. Last year, Voyager 1 started sending garbled data from the outside of the solar system. NASA ultimately figured out one of its computers had gone dead.

Voyager 2 is now in limbo , as the agency revealed Friday it had lost contact with the probe when someone sent a wrong command. It could be the end of Voyager 2's mission if NASA can't fix the mistake, which the agency probably won't be able to do before October.

As the probes are nearing the end of their scientific mission, here are 18 images from Voyager that changed science.

The Voyager probes were designed to visit Jupiter and Saturn.

last photo from voyager

The Voyager mission included two probes — Voyager 1 and Voyager 2 — which NASA launched in 1977 within a few months of each other.

NASA took advantage of a rare planet alignment to turbocharge their journeys into space.

NASA originally built the probes to last five years, but they have exceeded that lifespan many times .

As of August 20 and September 5, 2023, Voyager 2 and Voyager 1 will have been traveling for 46 years, respectively. 

This is what Voyager 1 saw on its approach to Jupiter.

last photo from voyager

Voyager 1 and Voyager 2 reached Jupiter in 1979.

As they flew by the planet, they took about 50,000 pictures of Jupiter. These blew away scientists, as the quality of the pictures was much better than those taken from Earth, according to NASA.

These snaps  taught scientists important facts about the planet's atmosphere, magnetic forces, and geology that would have been difficult to decipher otherwise.

The probes discovered two new moons orbiting Jupiter: Thebe and Metis.

last photo from voyager

They also spotted a thin ring around Jupiter.

last photo from voyager

The probe captured this picture as it was looking back at the planet backlit by the Sun. 

Voyager 1 discovered volcanoes at the surface of Io, one of Jupiter's moons.

last photo from voyager

Next stop: Saturn.

last photo from voyager

In 1980 and 1981, the probes reached Saturn . The flyby gave scientists unprecedented insight into the planet's ring structure, atmosphere, and moons.

Voyager snapped Saturn's rings in more detail than ever before.

last photo from voyager

And showed every secret that Enceladus, Saturn's moon, had to offer.

last photo from voyager

Saturn, snapped as the probe flew away, was shown in a new light.

last photo from voyager

By 1986, Voyager 2 had made it to Uranus.

last photo from voyager

By 1986, Voyager 1 has finished its grand tour of the solar system, and few out towards space. But Voyager 2 kept on its exploring our nearest planets, passing 50,600 miles away from Uranus in January 1986. 

Voyager 2 discovered two extra rings around Uranus , revealing the planet had at least 11, not 9. 

Voyager 2 also spotted 11 previously unseen moons around Uranus.

last photo from voyager

Here is a picture of Miranda, Uranus's sixth-biggest moon.

Voyager 2 was the first spacecraft to observe Neptune from a close distance.

last photo from voyager

In 1989, 12 years after its launch, Voyager 2 passed within 3,000 miles of Neptune. 

Here's Nepture taken by Voyager 2, in all its blue glory.

last photo from voyager

Voyager 2 took this unflattering pic of Triton's rough face.

last photo from voyager

It captured Triton, Neptune's moon in unprecedented detail. 

And snapped Triton's southern hemisphere.

last photo from voyager

As it flew by, Voyager 2 uncovered Neptune's rings.

last photo from voyager

As its parting gift, Voyager 2 took this beautiful picture of light grazing Neptune's south pole.

last photo from voyager

This is Voyager 2's last picture. Since it wouldn't come across another planet on its ongoing journey, NASA switched off its cameras after its flyby of Neptune to conserve energy for other instruments. 

Voyager 1 had one last trick up its sleeve.

last photo from voyager

As its last photographic hurrah in 1990, Voyager 1 took 60 images of the solar system from 4 billion miles away.

It gave us the Earth's longest selfie, dubbed the "pale blue dot."

last photo from voyager

This remains the longest-range selfie: a portrait of the Earth taken by a human-made probe from 4 billion miles away. 

After this picture, NASA switched off Voyager 1's cameras to save energy. NASA could switch the probes' cameras back on , but it is not a priority for the mission. 

Beyond the solar system

last photo from voyager

Though the probes are no longer sending pictures, they haven't stopped sending crucial information about space. 

In 2012, Voyager 1 became the first human-made instrument to cross into interstellar space by crossing the boundary between our solar system and the rest of the universe, called the heliopause. 

Voyager 2 was second, crossing that threshold in 2018 . The probe revealed that there was yet another  layer outside of our heliosphere.

The probes keep sending back measurements from interstellar space, like weird hums likely coming from vibrations made by neighboring stars.

Even after their instruments are switched off, the probes' mission continues.

last photo from voyager

NASA is planning to switch more of the probes' instruments in the hope of extending their life to the 2030s.

But even after all their instruments become quiet, their mission will carry on. As they drift off, they will still be carrying a golden record that carries crucial information about humanity. If intelligent extraterrestrial life exists, they could use that information to reach out to us.

This article was originally published on June 6, 2022, and is being updated with the latest developments about Voyager 1 and 2. 

last photo from voyager

  • Main content
  • Become A Member
  • Gift Membership
  • Kids Membership
  • Other Ways to Give
  • Explore Worlds
  • Defend Earth

How We Work

  • Education & Public Outreach
  • Space Policy & Advocacy
  • Science & Technology
  • Global Collaboration

Our Results

Learn how our members and community are changing the worlds.

Our citizen-funded spacecraft successfully demonstrated solar sailing for CubeSats.

Space Topics

  • Planets & Other Worlds
  • Space Missions
  • Space Policy
  • Planetary Radio
  • Space Images

The Planetary Report

The eclipse issue.

Science and splendor under the shadow.

Get Involved

Membership programs for explorers of all ages.

Get updates and weekly tools to learn, share, and advocate for space exploration.

Volunteer as a space advocate.

Support Our Mission

  • Renew Membership
  • Society Projects

The Planetary Fund

Accelerate progress in our three core enterprises — Explore Worlds, Find Life, and Defend Earth. You can support the entire fund, or designate a core enterprise of your choice.

  • Strategic Framework
  • News & Press

The Planetary Society

Know the cosmos and our place within it.

Our Mission

Empowering the world's citizens to advance space science and exploration.

  • Explore Space
  • Take Action
  • Member Community
  • Account Center
  • “Exploration is in our nature.” - Carl Sagan

Rae Paoletta • Mar 03, 2022

The best space pictures from the Voyager 1 and 2 missions

Launched in 1977, NASA’s Voyager 1 and 2 missions provided an unprecedented glimpse into the outer solar system — a liminal space once left largely to the imagination. The spacecraft provided views of worlds we’d never seen before, and in some cases, haven’t seen much of since.

The Voyager probes were launched about two weeks apart and had different trajectories, like two tour guides at the same museum. Only Voyager 2 visited the ice giants — Uranus and Neptune — for example.

The Voyagers hold a unique position in the pantheon of space history because they’re still making it; even right now, Voyagers 1 and 2 are the only functioning spacecraft in interstellar space. Both hold a Golden Record that contains sights and sounds of Earth in case alien life were to find one of the spacecraft.

As the Voyager missions voyage on, it’s good to look back at how they captured our solar system before leaving it.

This content is hosted by a third party (youtube.com), which uses marketing cookies. Please accept marketing cookies to watch this video.

Let’s Go Beyond The Horizon

Every success in space exploration is the result of the community of space enthusiasts, like you, who believe it is important. You can help usher in the next great era of space exploration with your gift today.

For full functionality of this site it is necessary to enable JavaScript. Here are instructions on how to enable JavaScript in your web browser .

last photo from voyager

  • History Classics
  • Your Profile
  • Find History on Facebook (Opens in a new window)
  • Find History on Twitter (Opens in a new window)
  • Find History on YouTube (Opens in a new window)
  • Find History on Instagram (Opens in a new window)
  • Find History on TikTok (Opens in a new window)
  • This Day In History
  • History Podcasts
  • History Vault

This Day In History : February 14

Changing the day will navigate the page to that given day in history. You can navigate days by using left and right arrows

“Pale Blue Dot” photo of Earth is taken

last photo from voyager

On Valentine's Day, 1990, 3.7 billion miles away from the sun, the Voyager 1 spacecraft takes a photograph of Earth. The picture, known as Pale Blue Dot , depicts our planet as a nearly indiscernible speck roughly the size of a pixel.

Launched on September 5, 1977, Voyagers 1 and 2 were charged with exploring the outer reaches of our solar system. It passed by Jupiter in March of 1979 and Saturn the following year. The gaps between the outer planets are so vast that it was another decade before it passed by Neptune and arrived at the spot where it was to take a series of images of the planets, known as the "Family Portrait" of our solar system.

Of the Family Portrait series, Pale Blue Dot was certainly the most memorable. The furthest image ever taken of Earth, it lent its name to popular astronomer Carl Sagan's 1994 book. Sagan, who advised the Voyager mission and had suggested the photo, wrote the following: "Look again at that dot. That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every "superstar," every "supreme leader," every saint and sinner in the history of our species lived there—on a mote of dust suspended in a sunbeam."

Voyager 1's journey continues. In 1998, it became the most distant human-made object in space, and on August 25, 2012, it left the furthest reaches of the sun's magnetic field and solar winds, becoming the first man-made object in interstellar space. 

Also on This Day in History February | 14

Frederick douglass is born, noam chomsky publishes his groundbreaking book "syntactic structures", iran's ayatollah khomeini calls on muslims to kill salman rushdie, author of "the satanic verses".

last photo from voyager

Teen gunman kills 17, injures 17 at Parkland, Florida high school

last photo from voyager

This Day in History Video: What Happened on February 14

Captain cook killed in hawaii.

last photo from voyager

Wake Up to This Day in History

Sign up now to learn about This Day in History straight from your inbox. Get all of today's events in just one email featuring a range of topics.

By submitting your information, you agree to receive emails from HISTORY and A+E Networks. You can opt out at any time. You must be 16 years or older and a resident of the United States.

More details : Privacy Notice | Terms of Use | Contact Us

last photo from voyager

St. Valentine beheaded

Olympic speed skater dan jansen falls after sister dies, theodore roosevelt’s wife and mother die, first trainload of oranges leaves los angeles, lillian hellman sues mary mccarthy for libel, the st. valentine’s day massacre, ussr and prc sign mutual defense treaty, sandinistas agree to free elections, patriots defeat loyalists at kettle creek.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels

NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels

This coronal mass ejection, captured by NASA’s Solar Dynamics Observatory, erupted on the Sun Aug. 31, 2012, traveling over 900 miles per second and sending radiation deep into space. Earth’s magnetic field shields it from radiation produced by solar events like this one, while Mars lacks that kind of shielding.

NASA Scientists Gear Up for Solar Storms at Mars

A person stands next to a small jet engine inside a soundproofed room.

NASA Uses Small Engine to Enhance Sustainable Jet Research

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

A large metal scientific instrument with black solar panels is suspended off the ground by a yellow crane. A trail of white material lies on the ground and connects to a semi-inflated white balloon in the background.

NASA Balloons Head North of Arctic Circle for Long-Duration Flights

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

last photo from voyager

NASA Shares Lessons of Human Systems Integration with Industry

Most mountains on the Earth are formed as plates collide and the crust buckles. Not so for the Moon, where mountains are formed as a result of impacts as seen by NASA Lunar Reconnaissance Orbiter.

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

Colorado River

NASA-Led Study Provides New Global Accounting of Earth’s Rivers

three men standing beside a small, black piece of space satellite hardware

NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Major Martian Milestones

Major Martian Milestones

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

NASA’s Webb Maps Weather on Planet 280 Light-Years Away

NASA’s Webb Maps Weather on Planet 280 Light-Years Away

Webb Captures Top of Iconic Horsehead Nebula in Unprecedented Detail

Webb Captures Top of Iconic Horsehead Nebula in Unprecedented Detail

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

last photo from voyager

NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now

An astronaut aboard a space shuttle points a video camera out the window.

Tech Today: Stay Safe with Battery Testing for Space

Swimming in water, A beaver family nibbles on aspen branches in Spawn Creek, Utah.

NASA Data Helps Beavers Build Back Streams

Julia Chavez

NASA Grant Brings Students at Underserved Institutions to the Stars

last photo from voyager

Washington State High Schooler Wins 2024 NASA Student Art Contest

last photo from voyager

NASA STEM Artemis Moon Trees

A man talks at a podium in an aircraft hangar.

NASA’s Commitment to Safety Starts with its Culture

Members of Team Miles with the CubeSat developed during the NASA Cube Quest Challenge. From left to right: Alex Wingeier, Don Smith, Wes Faler. Image Credit: Team Miles

NASA Challenge Gives Space Thruster Commercial Boost

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

45 years ago: voyager 1 begins its epic journey to the outer planets and beyond, johnson space center.

Forty-five years ago, the Voyager 1 spacecraft began an epic journey that continues to this day. The second of a pair of spacecraft, Voyager 1 lifted off on Sept. 5, 1977, 16 days after its twin left on a similar voyage. NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, managed the two spacecraft on their missions to explore the outer planets. Taking advantage of a rare planetary alignment to use the gravity of one planet to redirect the spacecraft to the next, the Voyagers planned to use Jupiter’s gravity to send them on to explore Saturn and its large moon Titan. They carried sophisticated instruments to conduct their in-depth explorations of the giant planets. Both spacecraft continue to return data as they make their way out of our solar system and enter interstellar space.

voyager_1_tops_trajectories

In the 1960s, mission designers at JPL noted that the next occurrence of a once-every-175-year alignment of the outer planets would happen in the late 1970s. A spacecraft could take advantage of this opportunity to fly by Jupiter and use its gravity to bend its trajectory to visit Saturn, and repeat the process to also visit Uranus, Neptune, and Pluto. Launching several missions to visit each planet individually would take much longer and cost much more. The original plan to send two pairs of Thermoelectric Outer Planet Spacecraft on these Grand Tours proved too costly leading to its cancellation in 1971. The next year, NASA approved a scaled-down version of the project to send a pair of Mariner-class spacecraft in 1977 to explore just Jupiter and Saturn, with an expected five-year operational life. On March 7, 1977, NASA Administrator James C. Fletcher announced the renaming of these Mariner Jupiter/Saturn 1977 spacecraft as Voyager 1 and 2. Scientists held out hope that one of them could ultimately visit Uranus and Neptune, thereby fulfilling most of the original Grand Tour’s objectives – Pluto would have to wait several decades for its first visit.

voyager_1_mjs_77_artwork_1975

Each Voyager carried a suite of 11 instruments to study the planets during each encounter and to learn more about interplanetary space in the outer reaches of the solar system, including: 

  • An imaging science system consisting of narrow-angle and wide-angle cameras to photograph the planet and its satellites.
  • A radio science system to determine the planet’s physical properties.
  • An infrared interferometer spectrometer to investigate local and global energy balance and atmospheric composition.
  • An ultraviolet spectrometer to measure atmospheric properties.
  • A magnetometer to analyze the planet’s magnetic field and interaction with the solar wind.
  • A plasma spectrometer to investigate microscopic properties of plasma ions.
  • A low-energy charged particle device to measure fluxes and distributions of ions.
  • A cosmic ray detection system to determine the origin and behavior of cosmic radiation.
  • A planetary radio astronomy investigation to study radio emissions from Jupiter.
  • A photopolarimeter to measure the planet’s surface composition.
  • A plasma wave system to study the planet’s magnetosphere.

voyager_1_instruments

Voyager 1 lifted off on Sept. 5, 1977, atop a Titan IIIE-Centaur rocket from Launch Complex 41 at Cape Canaveral Air Force Station, now Cape Canaveral Space Force Station, in Florida. Two weeks after its launch, from a distance of 7.25 million miles, Voyager 1 turned its camera back toward its home planet and took the first single-frame image of the Earth-Moon system. The spacecraft successfully crossed the asteroid belt between Dec. 10, 1977, and Sept. 8, 1978.

voyager_1_earth_and_moon_from_voyager_1_1977

Although Voyager 1 launched two weeks after its twin, it traveled on a faster trajectory and arrived at Jupiter four months earlier. Voyager 1 conducted its observations of Jupiter between Jan. 6 and April 13, 1979, making its closest approach of 216,837 miles from the planet’s center on March 5. The spacecraft returned 19,000 images of the giant planet, many of Jupiter’s satellites, and confirmed the presence of a thin ring encircling it. Its other instruments returned information about Jupiter’s atmosphere and magnetic field. Jupiter’s massive gravity field bent the spacecraft’s trajectory and accelerated it toward Saturn.

voyager_1_saturn_departure_nov_16_1980_3_3_m_miles

Voyager 1 began its long-range observations of Saturn on Aug. 22, 1980, passed within 114,500 miles of the planet’s center on Nov. 12, and concluded its studies on Dec. 14. Because of its interest to scientists, mission planners chose the spacecraft’s trajectory to make a close flyby of Saturn’s largest moon Titan – the only planetary satellite with a dense atmosphere – just before the closest approach to the planet itself. This trajectory, passing over Saturn’s south pole and bending north over the plane of the ecliptic, precluded Voyager 1 from making any additional planetary encounters. The spacecraft flew 4,033 miles from Titan’s center, returning images of its unbroken orange atmosphere and high-altitude blue haze layer. During the encounter, Voyager 1 returned 16,000 photographs, imaging Saturn, its rings, many of its known satellites and discovering several new ones, while its instruments returned data about Saturn’s atmosphere and magnetic field.

voyager_1_family_portrait

On Feb. 14, 1990, more than 12 years after it began its journey from Earth and shortly before controllers  permanently turned off its cameras to conserve power, Voyager 1 spun around and pointed them back into the solar system. In a mosaic of 60 images, it captured a “family portrait” of six of the solar system’s planets, including a pale blue dot called Earth more than 3.7 billion miles away. Fittingly, these were the last pictures returned from either Voyager spacecraft. On Feb. 17, 1998, Voyager 1 became the most distant human-made object, overtaking the Pioneer 10 spacecraft on their way out of the solar system. In February 2020, to commemorate the photograph’s 30th anniversary, NASA released a remastered version of the image of Earth as Pale Blue Dot Revisited .

earth-palebluedot-6bkm-voyager1

On New Year’s Day 1990, both spacecraft officially began the Voyager Interstellar Mission as they inexorably made their escape from our solar system. On Aug. 25, 2012, Voyager 1 passed beyond the heliopause, the boundary between the heliosphere, the bubble-like region of space created by the Sun, and the interstellar medium. Its twin followed suit six years later. Today , 45 years after its launch and 14.6 billion miles from Earth, four of Voyager 1’s 11 instruments continue to return useful data, having now spent 10 years in interstellar space. Signals from the spacecraft take nearly 22 hours to reach Earth, and 22 hours for Earth-based signals to reach the spacecraft. Engineers expect that the spacecraft will continue to return data from interstellar space until about 2025 when it will no longer be able to power its systems. And just in case an alien intelligence finds it one day, Voyager 1 like its twin carries a gold-plated record that contains information about its home planet, including recordings of terrestrial sounds, music, and greetings in 55 languages. Engineers at NASA thoughtfully included Instructions on how to play the record.

voyager_1_golden_record

The voyage continues…

NASA’s Voyager 1 Resumes Sending Engineering Updates to Earth

Voyager

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012.

After some inventive sleuthing, the mission team can — for the first time in five months — check the health and status of the most distant human-made object in existence.

For the first time since November , NASA’s Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA’s Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft’s three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it’s sent to Earth.

After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

The team discovered that a single chip responsible for storing a portion of the FDS memory — including some of the FDS computer’s software code — isn’t working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide the affected code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

The team started by singling out the code responsible for packaging the spacecraft’s engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22 ½ hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22 ½ hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification worked: For the first time in five months, they have been able to check the health and status of the spacecraft.

Get the Latest News from the Final Frontier

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago , the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Caltech in Pasadena, California, manages JPL for NASA.

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

galleries  /  images voyager took

Images voyager took of jupiter.

Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and its encounter continued into August. They took more than 33,000 pictures of Jupiter and its five major satellites.

For a summary of the more important science results from the Voyager encounters with Jupiter, click here .

Jupiter and two moons.

Portion of jupiter and moons., jupiter’s ring., jupiter’s moon io with active volcanoes., jupiter’s moon callisto., jupiter’s great red spot., closeup of jupiter’s great red spot..

More From Forbes

Nasa celebrates as 1977’s voyager 1 phones home at last.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar ... [+] space, or the space between stars, which it entered in 2012.

Voyager 1 has finally returned usable data to NASA from outside the solar system after five months offline.

Launched in 1977 and now in its 46th year, the probe has been suffering from communication issues since November 14. The same thing also happened in 2022 . However, this week, NASA said that engineers were finally able to get usable data about the health and status of its onboard engineering systems.

Fixing Voyager 1 has been slow work. It’s currently over 15 billion miles (24 billion kilometers) from Earth, which means a radio message takes about 22.5 hours to reach it—and the same again to receive an answer.

The problem appears to have been its flight data subsystem, one of the spacecraft’s three onboard computers. Its job is to package the science and engineering data before it’s sent to Earth. Since the computer chip that stores its memory and some of its code is broken, engineers had to reinsert that code into a new location.

Next up for engineers at NASA’s Jet Propulsion Laboratory in California is to adjust other parts of the FDS software so Voyager 1 can resume sending science data.

Apple s iPhone 16 Pro Design Revealed In New Leak

Exclusive: employers are souring on ivy league grads, while these 20 “new ivies” ascend, new ios 18 ai security move changes the game for all iphone users, beyond the ‘heliopause’.

The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little earlier, on August 20, 1977. Voyager 2—now 12 billion miles away and traveling more slowly—continues to operate normally.

Both are now beyond what astronomers call the heliopause—a protective bubble of particles and magnetic fields created by the sun, which is thought to represent the sun’s farthest influence. Voyager 1 got to the heliopause in 2012 and Voyager 2 in 2018.

The Pale Blue Dot is a photograph of Earth taken Feb. 14, 1990, by NASA’s Voyager 1 at a distance of ... [+] 3.7 billion miles (6 billion kilometers) from the sun. The image inspired the title of scientist Carl Sagan's book, "Pale Blue Dot: A Vision of the Human Future in Space," in which he wrote: "Look again at that dot. That's here. That's home. That's us."

Pale Blue Dot

Since their launch from Cape Canaveral, Florida, aboard Titan-Centaur rockets, Voyager 1 and Voyager 2 have had glittering careers. Both photographed Jupiter and Saturn in 1979 and 1980 before going their separate ways. Voyager 1 could have visited Pluto, but that was sacrificed so scientists could get images of Saturn’s moon, Titan, a maneuver that made it impossible for it to reach any other body in the solar system. Meanwhile, Voyager 2 took slingshots around the planets to also image Uranus in 1986 and Neptune in 1989—the only spacecraft ever to image the two outer planets.

On February 14, 1990, when 3.7 billion miles from Earth, Voyager 1 turned its cameras back toward the sun and took an image that included our planet as “a mote of dust suspended in a sunbeam.” Known as the “Pale Blue Dot,” it’s one of the most famous photos ever taken. It was remastered in 2019 .

Wishing you clear skies and wide eyes.

Jamie Carter

  • Editorial Standards
  • Reprints & Permissions
  • Skip to main content
  • Keyboard shortcuts for audio player

Good news from Voyager 1, which is now out past the edge of the solar system

Nell Greenfieldboyce 2010

Nell Greenfieldboyce

In mid-November, Voyager 1 suffered a glitch, and it's messages stopped making sense. But the NASA probe is once again sending messages to Earth that make sense.

Copyright © 2024 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by an NPR contractor. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.

share this!

April 27, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

reputable news agency

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

by Marcia Dunn

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft's coding to work around the trouble.

NASA's Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space . The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can't hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space — the space between star systems — since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

© 2024 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed without permission.

Explore further

Feedback to editors

last photo from voyager

Study uncovers the secret of long-lived stem cells

last photo from voyager

Scientists show that ancient village adapted to drought, rising seas

2 hours ago

last photo from voyager

How polyps of the moon jellyfish repel viral attacks on their microbiome

last photo from voyager

Organic electrochemical transistors: Scientists solve chemical mystery at the interface of biology and technology

3 hours ago

last photo from voyager

Activity in a room stirs up nanoparticles left over from consumer sprays, study shows

last photo from voyager

Study dispels myth that purebred dogs are more prone to health problems

4 hours ago

last photo from voyager

Study shows climate change and mercury pollution stressed plants for millions of years

5 hours ago

last photo from voyager

Exploiting disorder to harvest heat energy: The potentialities of 2D magnets for thermoelectric applications

last photo from voyager

Citizen scientists help discover record-breaking exoplanet in binary star system

last photo from voyager

Novel calculations peg age of 'baby' asteroid

Relevant physicsforums posts, documenting the setup of my new telescope.

Apr 28, 2024

Quasi-Moons

Need help simplifying standard error formula for redshift.

Apr 27, 2024

Our Beautiful Universe - Photos and Videos

Apr 25, 2024

Solar Activity and Space Weather Update thread

'devil' comet visible tonight 21.04.24.

More from Astronomy and Astrophysics

Related Stories

last photo from voyager

NASA's Voyager 1 resumes sending engineering updates to Earth

Apr 22, 2024

last photo from voyager

NASA hears signal from Voyager 2 spacecraft after mistakenly cutting contact

Aug 1, 2023

last photo from voyager

NASA listens for Voyager 2 spacecraft after wrong command cuts contact

Jul 31, 2023

last photo from voyager

Engineers working to resolve issue with Voyager 1 computer

Dec 13, 2023

As Voyager 1's mission draws to a close, one planetary scientist reflects on its legacy

Mar 18, 2024

last photo from voyager

NASA back in touch with Voyager 2 after 'interstellar shout'

Aug 4, 2023

Recommended for you

last photo from voyager

Clouds blanket the night side of the hot exoplanet WASP-43b

6 hours ago

last photo from voyager

Enceladus spills its guts through strike–slip motion

last photo from voyager

New study reveals mystery of decaying exoplanet orbits

Apr 29, 2024

last photo from voyager

Probing the effects of interplanetary space on asteroid Ryugu

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact

On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health.

An illustration of a spacecraft with a white disk in space.

NASA's interstellar explorer Voyager 1 is finally communicating with ground control in an understandable way again. On Saturday (April 20), Voyager 1 updated ground control about its health status for the first time in 5 months. While the Voyager 1 spacecraft still isn't sending valid science data back to Earth, it is now returning usable information about the health and operating status of its onboard engineering systems. 

Thirty-five years after its launch in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space . It was followed out of our cosmic quarters by its space-faring sibling, Voyager 2 , six years later in 2018. Voyager 2, thankfully, is still operational and communicating well with Earth. 

The two spacecraft remain the only human-made objects exploring space beyond the influence of the sun. However, on Nov. 14, 2023, after 11 years of exploring interstellar space and while sitting a staggering 15 billion miles (24 billion kilometers) from Earth, Voyager 1's binary code — computer language composed of 0s and 1s that it uses to communicate with its flight team at NASA — stopped making sense.

Related: We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

In March, NASA's Voyager 1 operating team sent a digital "poke" to the spacecraft, prompting its flight data subsystem (FDS) to send a full memory readout back home.

This memory dump revealed to scientists and engineers that the "glitch" is the result of a corrupted code contained on a single chip representing around 3% of the FDS memory. The loss of this code rendered Voyager 1's science and engineering data unusable.

People, many of whom are wearing matching blue shirts, celebrating at a conference table.

The NASA team can't physically repair or replace this chip, of course, but what they can do is remotely place the affected code elsewhere in the FDS memory. Though no single section of the memory is large enough to hold this code entirely, the team can slice it into sections and store these chunks separately. To do this, they will also have to adjust the relevant storage sections to ensure the addition of this corrupted code won't cause those areas to stop operating individually, or working together as a whole. In addition to this, NASA staff will also have to ensure any references to the corrupted code's location are updated.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

On April 18, 2024, the team began sending the code to its new location in the FDS memory. This was a painstaking process, as a radio signal takes 22.5 hours to traverse the distance between Earth and Voyager 1, and it then takes another 22.5 hours to get a signal back from the craft. 

By Saturday (April 20), however, the team confirmed their modification had worked. For the first time in five months, the scientists were able to communicate with Voyager 1 and check its health. Over the next few weeks, the team will work on adjusting the rest of the FDS software and aim to recover the regions of the system that are responsible for packaging and returning vital science data from beyond the limits of the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

Boeing Starliner 1st astronaut flight: Live updates

China releases world's most detailed moon atlas (video)

Relive NASA's historic Artemis 1 moon mission in this mini-doc (video)

  • Robb62 'V'ger must contact the creator. Reply
  • Holy HannaH! Couldn't help but think that "repair" sounded extremely similar to the mechanics of DNA and the evolution of life. Reply
  • Torbjorn Larsson *Applause* indeed, thanks to the Voyager teams for the hard work! Reply
  • SpaceSpinner I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured! Reply
Admin said: On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data. NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact : Read more
evw said: I'm incredibly grateful for the persistence and dedication of the Voyagers' teams and for the amazing accomplishments that have kept these two spacecrafts operational so many years beyond their expected lifetimes. V-1 was launched when I was 25 years young; I was nearly delirious with joy. Exploring the physical universe captivated my attention while I was in elementary school and has kept me mesmerized since. I'm very emotional writing this note, thinking about what amounts to a miracle of technology and longevity in my eyes. BRAVO!!! THANK YOU EVERYONE PAST & PRESENT!!!
  • EBairead I presume it's Fortran. Well done all. Reply
SpaceSpinner said: I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured!
EBairead said: I presume it's Fortran. Well done all.
  • View All 13 Comments

Most Popular

  • 2 Astrophotographer captures the Running Chicken Nebula in impeccable detail
  • 3 China unveils video of its moon base plans, which weirdly includes a NASA space shuttle
  • 4 NASA's TESS exoplanet hunter may have spotted its 1st rogue planet
  • 5 This spacecraft is headed to NASA's asteroid-crash aftermath — but first, it'll stop by Mars

last photo from voyager

  • International edition
  • Australia edition
  • Europe edition

Nasa depiction of Voyager 1 operating in space

Voyager 1 transmitting data again after Nasa remotely fixes 46-year-old probe

Engineers spent months working to repair link with Earth’s most distant spacecraft, says space agency

Earth’s most distant spacecraft, Voyager 1, has started communicating properly again with Nasa after engineers worked for months to remotely fix the 46-year-old probe.

Nasa’s Jet Propulsion Laboratory (JPL), which makes and operates the agency’s robotic spacecraft, said in December that the probe – more than 15bn miles (24bn kilometres) away – was sending gibberish code back to Earth.

In an update released on Monday , JPL announced the mission team had managed “after some inventive sleuthing” to receive usable data about the health and status of Voyager 1’s engineering systems. “The next step is to enable the spacecraft to begin returning science data again,” JPL said. Despite the fault, Voyager 1 had operated normally throughout, it added.

Launched in 1977, Voyager 1 was designed with the primary goal of conducting close-up studies of Jupiter and Saturn in a five-year mission. However, its journey continued and the spacecraft is now approaching a half-century in operation.

Voyager 1 crossed into interstellar space in August 2012, making it the first human-made object to venture out of the solar system. It is currently travelling at 37,800mph (60,821km/h).

Hi, it's me. - V1 https://t.co/jgGFBfxIOe — NASA Voyager (@NASAVoyager) April 22, 2024

The recent problem was related to one of the spacecraft’s three onboard computers, which are responsible for packaging the science and engineering data before it is sent to Earth. Unable to repair a broken chip, the JPL team decided to move the corrupted code elsewhere, a tricky job considering the old technology.

The computers on Voyager 1 and its sister probe, Voyager 2, have less than 70 kilobytes of memory in total – the equivalent of a low-resolution computer image. They use old-fashioned digital tape to record data.

The fix was transmitted from Earth on 18 April but it took two days to assess if it had been successful as a radio signal takes about 22 and a half hours to reach Voyager 1 and another 22 and a half hours for a response to come back to Earth. “When the mission flight team heard back from the spacecraft on 20 April, they saw that the modification worked,” JPL said.

Alongside its announcement, JPL posted a photo of members of the Voyager flight team cheering and clapping in a conference room after receiving usable data again, with laptops, notebooks and doughnuts on the table in front of them.

The Retired Canadian astronaut Chris Hadfield, who flew two space shuttle missions and acted as commander of the International Space Station, compared the JPL mission to long-distance maintenance on a vintage car.

“Imagine a computer chip fails in your 1977 vehicle. Now imagine it’s in interstellar space, 15bn miles away,” Hadfield wrote on X . “Nasa’s Voyager probe just got fixed by this team of brilliant software mechanics.

Voyager 1 and 2 have made numerous scientific discoveries , including taking detailed recordings of Saturn and revealing that Jupiter also has rings, as well as active volcanism on one of its moons, Io. The probes later discovered 23 new moons around the outer planets.

As their trajectory takes them so far from the sun, the Voyager probes are unable to use solar panels, instead converting the heat produced from the natural radioactive decay of plutonium into electricity to power the spacecraft’s systems.

Nasa hopes to continue to collect data from the two Voyager spacecraft for several more years but engineers expect the probes will be too far out of range to communicate in about a decade, depending on how much power they can generate. Voyager 2 is slightly behind its twin and is moving slightly slower.

In roughly 40,000 years, the probes will pass relatively close, in astronomical terms, to two stars. Voyager 1 will come within 1.7 light years of a star in the constellation Ursa Minor, while Voyager 2 will come within a similar distance of a star called Ross 248 in the constellation of Andromeda.

More on this story

last photo from voyager

Cosmic cleaners: the scientists scouring English cathedral roofs for space dust

last photo from voyager

Russia acknowledges continuing air leak from its segment of space station

last photo from voyager

Uncontrolled European satellite falls to Earth after 30 years in orbit

last photo from voyager

Cosmonaut Oleg Kononenko sets world record for most time spent in space

last photo from voyager

‘Old smokers’: astronomers discover giant ancient stars in Milky Way

last photo from voyager

Nasa postpones plans to send humans to moon

last photo from voyager

What happened to the Peregrine lander and what does it mean for moon missions?

last photo from voyager

Peregrine 1 has ‘no chance’ of landing on moon due to fuel leak

Most viewed.

After months of silence, Voyager 1 has returned NASA’s calls

Artist illustration depicts Voyager 1 entering interstellar space.

  • Show more sharing options
  • Copy Link URL Copied!

For the last five months, it seemed very possible that a 46-year-old conversation had finally reached its end.

Since its launch from Kennedy Space Center on Sept. 5, 1977, NASA’s Voyager 1 spacecraft has diligently sent regular updates to Earth on the health of its systems and data collected from its onboard instruments.

But in November, the craft went quiet.

Voyager 1 is now some 15 billion miles away from Earth. Somewhere in the cold interstellar space between our sun and the closest stars, its flight data system stopped communicating with the part of the probe that allows it to send signals back to Earth. Engineers at the Jet Propulsion Laboratory in La Cañada Flintridge could tell that Voyager 1 was getting its messages, but nothing was coming back.

“We’re to the point where the hardware is starting to age,” said Linda Spilker, the project scientist for the Voyager mission. “It’s like working on an antique car, from 15 billion miles away.”

Week after week, engineers sent troubleshooting commands to the spacecraft, each time patiently waiting the 45 hours it takes to get a response here on Earth — 22.5 hours traveling at the speed of light to reach the probe, and 22.5 hours back.

Space Artist Final

Science & Medicine

This space artist created the Golden Record and changed the way we see the universe

Space artist Jon Lomberg has produced work that attempts to visualize what we can’t truly see, and to communicate with creatures we can’t yet imagine.

July 26, 2023

By March, the team had figured out that a memory chip that stored some of the flight data system’s software code had failed, turning the craft’s outgoing communications into gibberish.

A long-distance repair wasn’t possible. There wasn’t enough space anywhere in the system to shift the code in its entirety. So after manually reviewing the code line by line, engineers broke it up and tucked the pieces into the available slots of memory.

They sent a command to Voyager on Thursday. In the early morning hours Saturday, the team gathered around a conference table at JPL: laptops open, coffee and boxes of doughnuts in reach.

At 6:41 a.m., data from the craft showed up on their screens. The fix had worked .

“We went from very quiet and just waiting patiently to cheers and high-fives and big smiles and sighs of relief,” Spilker said. “I’m very happy to once again have a meaningful conversation with Voyager 1.”

Voyager 1 is one of two identical space probes. Voyager 2, launched two weeks before Voyager 1, is now about 13 billion miles from Earth, the two crafts’ trajectories having diverged somewhere around Saturn. (Voyager 2 continued its weekly communications uninterrupted during Voyager 1’s outage.)

Los Angeles, CA - January 30: The retired space shuttle Endeavour is lifted into the site of the future Samuel Oschin Air and Space Center at California Science Center on Tuesday, Jan. 30, 2024 in Los Angeles, CA. (Ringo Chiu / For The Times)

Space shuttle Endeavour is lifted into the sky, takes final position as star of new museum wing

A shrink-wrapped Endeavour was hoisted and then carefully placed in its final location Tuesday at the still-under-construction Samuel Oschin Air and Space Center.

Jan. 30, 2024

They are the farthest-flung human-made objects in the universe, having traveled farther from their home planet than anything else this species has built. The task of keeping communications going grows harder with each passing day. Every 24 hours, Voyager 1 travels 912,000 miles farther away from us. As that distance grows, the signal becomes slower and weaker.

When the probe visited Jupiter in 1979, it was sending back data at a rate of 115.2 kilobits per second, Spilker said. Today, 45 years and more than 14 billion miles later, data come back at a rate of 40 bits per second.

The team is cautiously optimistic that the probes will stay in contact for three more years, long enough to celebrate the mission’s 50th anniversary in 2027, Spilker said. They could conceivably last until the 2030s.

The conversation can’t last forever. Microscopic bits of silica keep clogging up the thrusters that keep the probes’ antennas pointed toward Earth, which could end communications. The power is running low. Eventually, the day will come when both Voyagers stop transmitting data to Earth, and the first part of their mission ends.

But on the day each craft goes quiet, they begin a new era, one that could potentially last far longer. Each probe is equipped with a metallic album cover containing a Golden Record , a gold-plated copper disk inscribed with sounds and images meant to describe the species that built the Voyagers and the planet they came from.

Erosion in space is negligible; the images could be readable for another billion years or more. Should any other intelligent life form encounter one of the Voyager probes and have a means of retrieving the data from the record, they will at the very least have a chance to figure out who sent them — even if our species is by that time long gone.

PASADENA, CA - AUGUST 02: Suzanne Dodd worked on the Voyager mission in 1986 before moving onto Cassini and later returning to Voyager. Voyager 1, launched in 1977, is the most distant human-created object in space. Photographed on Tuesday, Aug. 2, 2022 in Pasadena, CA. (Myung J. Chun / Los Angeles Times)

JPL tries to keep Voyager space probes from disconnecting the world’s longest phone call

Keeping in touch with NASA’s two aging Voyager spacecraft is getting harder to do as they get farther away and their power sources dwindle.

Sept. 3, 2022

More to Read

These tubes hold samples of rock cores and regolith collected by NASA's Perseverance rover.

Too expensive, too slow: NASA asks for help with JPL’s Mars Sample Return mission

April 15, 2024

Illustration shows a concept for multiple robots that would team up to bring home to Earth samples from Mars

NASA’s attempt to bring home part of Mars is unprecedented. The mission’s problems are not

March 25, 2024

Budget deal for NASA offers glimmer of hope for JPL’s Mars Sample Return mission

March 6, 2024

last photo from voyager

Corinne Purtill is a science and medicine reporter for the Los Angeles Times. Her writing on science and human behavior has appeared in the New Yorker, the New York Times, Time Magazine, the BBC, Quartz and elsewhere. Before joining The Times, she worked as the senior London correspondent for GlobalPost (now PRI) and as a reporter and assignment editor at the Cambodia Daily in Phnom Penh. She is a native of Southern California and a graduate of Stanford University.

More From the Los Angeles Times

Firefighters are on scene of a collision between a Metro Rail train and a bus at Exposition Park on Tuesday.

More than 50 are injured when L.A. Metro train, bus collide outside Exposition Park

Long Beach, California-Long Beach PD homicide detectives are seeking the public's help to identify the suspect responsible for the murder of 17-year-old victim, Briana Soto. The incident occurred in the 1100 block of Lewis Ave., Long Beach on March 26, 2024. (LBPD)

A 17-year-old girl was fatally shot while walking home in Long Beach. Police release video of a suspect

The "World of Color" show at Disney California Adventure features movies projected onto water fountains.

The scrappiest place on Earth? Altercation at Disney California Adventure leads to ejection

Lakers coach Darvin Ham gestures with his hands while speaking with referee Kevin Scott

Why the Lakers lost their last timeout despite successful challenge against Nuggets

NASA Logo

First to visit all four giant planets

Computer-generated view of a Voyager spacecraft far from the Sun.

Voyager 2 is the only spacecraft to visit Uranus and Neptune. The probe is now in interstellar space, the region outside the heliopause, or the bubble of energetic particles and magnetic fields from the Sun.

Mission Type

What is Voyager 2?

NASA's Voyager 2 is the second spacecraft to enter interstellar space. On Dec. 10, 2018, the spacecraft joined its twin – Voyager 1 – as the only human-made objects to enter the space between the stars.

  • Voyager 2 is the only spacecraft to study all four of the solar system's giant planets at close range.
  • Voyager 2 discovered a 14th moon at Jupiter.
  • Voyager 2 was the first human-made object to fly past Uranus.
  • At Uranus, Voyager 2 discovered 10 new moons and two new rings.
  • Voyager 2 was the first human-made object to fly by Neptune.
  • At Neptune, Voyager 2 discovered five moons, four rings, and a "Great Dark Spot."

In Depth: Voyager 2

The two-spacecraft Voyager missions were designed to replace original plans for a “Grand Tour” of the planets that would have used four highly complex spacecraft to explore the five outer planets during the late 1970s.

NASA canceled the plan in January 1972 largely due to anticipated costs (projected at $1 billion) and instead proposed to launch only two spacecraft in 1977 to Jupiter and Saturn. The two spacecraft were designed to explore the two gas giants in more detail than the two Pioneers (Pioneers 10 and 11) that preceded them.

In 1974, mission planners proposed a mission in which, if the first Voyager was successful, the second one could be redirected to Uranus and then Neptune using gravity assist maneuvers.

Each of the two spacecraft was equipped with a slow-scan color TV camera to take images of the planets and their moons and each also carried an extensive suite of instruments to record magnetic, atmospheric, lunar, and other data about the planetary systems.

The design of the two spacecraft was based on the older Mariners, and they were known as Mariner 11 and Mariner 12 until March 7, 1977, when NASA Administrator James C. Fletcher (1919-1991) announced that they would be renamed Voyager.

Power was provided by three plutonium oxide radioisotope thermoelectric generators (RTGs) mounted at the end of a boom.

Voyager 2 at Jupiter

Against a black background, an enormous sphere in various shades of orange fills most of the frame and extends beyond the picture, to the left, top, and bottom. Ribbons of different shades of orange and white circle the planet horizontally, some looking like they were folded ver on themselves repeatedly, like hard ribbon candy. The most prominent featue is a large swirl of deep orange at the center of the frame, looking like it's spinning clockwise.

Voyager 2 began transmitting images of Jupiter April 24, 1979, for time-lapse movies of atmospheric circulation. Unlike Voyager 1, Voyager 2 made close passes to the Jovian moons on its way into the system, with scientists especially interested in more information from Europa and Io (which necessitated a 10 hour-long “volcano watch”).

During its encounter, it relayed back spectacular photos of the entire Jovian system, including its moons Callisto, Ganymede, Europa (at a range of about 127,830 miles or 205,720 kilometers, much closer than Voyager 1), Io, and Amalthea, all of which had already been surveyed by Voyager 1.

Voyager 2’s closest encounter to Jupiter was at 22:29 UT July 9, 1979, at a range of about 400,785 miles (645,000 kilometers). It transmitted new data on the planet’s clouds, its newly discovered four moons, and ring system as well as 17,000 new pictures.

When the earlier Pioneers flew by Jupiter, they detected few atmospheric changes from one encounter to the second, but Voyager 2 detected many significant changes, including a drift in the Great Red Spot as well as changes in its shape and color.

With the combined cameras of the two Voyagers, at least 80% of the surfaces of Ganymede and Callisto were mapped out to a resolution of about 3 miles (5 kilometers).

Voyager 2 at Saturn

A serene Saturn, encircled by its complex ring system.

Following a course correction two hours after its closest approach to Jupiter, Voyager 2 sped to Saturn, its trajectory determined to a large degree by a decision made in January 1981, to try to send the spacecraft to Uranus and Neptune later in the decade.

Its encounter with the sixth planet began Aug. 22, 1981, two years after leaving the Jovian system, with imaging of the moon Iapetus. Once again, Voyager 2 repeated the photographic mission of its predecessor, although it actually flew about 14,290 miles (23,000 kilometers) closer to Saturn. The closest encounter to Saturn was at 01:21 UT Aug. 26, 1981, at a range of about 63,000 miles (101,000 kilometers).

The spacecraft provided more detailed images of the ring “spokes” and kinks, and also the F-ring and its shepherding moons, all found by Voyager 1. Voyager 2’s data suggested that Saturn’s A-ring was perhaps only about 980 feet (300 meters) thick.

As it flew behind and up past Saturn, the probe passed through the plane of Saturn’s rings at a speed of 8 miles per second (13 kilometers per second). For several minutes during this phase, the spacecraft was hit by thousands of micron-sized dust grains that created “puff” plasma as they were vaporized. Because the vehicle’s attitude was repeatedly shifted by the particles, attitude control jets automatically fired many times to stabilize the vehicle.

During the encounter, Voyager 2 also photographed the Saturn moons Hyperion (the “hamburger moon”), Enceladus, Tethys, and Phoebe as well as the more recently discovered Helene, Telesto and Calypso.

Voyager 2 at Uranus

Ariel - Highest Resolution Color Picture

Although Voyager 2 had fulfilled its primary mission goals with the two planetary encounters, mission planners directed the veteran spacecraft to Uranus—a journey that would take about 4.5 years.

In fact, its encounter with Jupiter was optimized in part to ensure that future planetary flybys would be possible.

The Uranus encounter’s geometry was also defined by the possibility of a future encounter with Neptune: Voyager 2 had only 5.5 hours of close study during its flyby.

Voyager 2 was the first human-made object to fly past the planet Uranus.

Long-range observations of the planet began Nov. 4, 1985, when signals took approximately 2.5 hours to reach Earth. Light conditions were 400 times less than terrestrial conditions. Closest approach to Uranus took place at 17:59 UT Jan. 24, 1986, at a range of about 50,640 miles (81,500 kilometers).

During its flyby, Voyager 2 discovered 10 new moons (given such names as Puck, Portia, Juliet, Cressida, Rosalind, Belinda, Desdemona, Cordelia, Ophelia, and Bianca -- obvious allusions to Shakespeare), two new rings in addition to the “older” nine rings, and a magnetic field tilted at 55 degrees off-axis and off-center.

The spacecraft found wind speeds in Uranus’ atmosphere as high as 450 miles per hour (724 kilometers per hour) and found evidence of a boiling ocean of water some 497 miles (800 kilometers) below the top cloud surface. Its rings were found to be extremely variable in thickness and opacity.

Voyager 2 also returned spectacular photos of Miranda, Oberon, Ariel, Umbriel, and Titania, five of Uranus’ larger moons. In flying by Miranda at a range of only 17,560 miles (28,260 kilometers), the spacecraft came closest to any object so far in its nearly decade-long travels. Images of the moon showed a strange object whose surface was a mishmash of peculiar features that seemed to have no rhyme or reason. Uranus itself appeared generally featureless.

The spectacular news of the Uranus encounter was interrupted the same week by the tragic Challenger accident that killed seven astronauts during their space shuttle launch Jan. 28, 1986.

Voyager 2 at Neptune

Neptune Full Disk View

Following the Uranus encounter, the spacecraft performed a single midcourse correction Feb. 14, 1986—the largest ever made by Voyager 2—to set it on a precise course to Neptune.

Voyager 2’s encounter with Neptune capped a 4.3 billion-mile (7 billion-kilometer) journey when, on Aug. 25, 1989, at 03:56 UT, it flew about 2,980 miles (4,800 kilometers) over the cloud tops of the giant planet, the closest of its four flybys. It was the first human-made object to fly by the planet. Its 10 instruments were still in working order at the time.

During the encounter, the spacecraft discovered six new moons (Proteus, Larissa, Despina, Galatea, Thalassa, and Naiad) and four new rings.

The planet itself was found to be more active than previously believed, with 680-mile (1,100-kilometer) per hour winds. Hydrogen was found to be the most common atmospheric element, although the abundant methane gave the planet its blue appearance.

Images revealed details of the three major features in the planetary clouds—the Lesser Dark Spot, the Great Dark Spot, and Scooter.

Voyager photographed two-thirds of Neptune’s largest moon Triton, revealing the coldest known planetary body in the solar system and a nitrogen ice “volcano” on its surface. Spectacular images of its southern hemisphere showed a strange, pitted cantaloupe-type terrain.

The flyby of Neptune concluded Voyager 2’s planetary encounters, which spanned an amazing 12 years in deep space, virtually accomplishing the originally planned “Grand Tour” of the solar system, at least in terms of targets reached if not in science accomplished.

Voyager 2's Interstellar Mission

Once past the Neptune system, Voyager 2 followed a course below the ecliptic plane and out of the solar system. Approximately 35 million miles (56 million kilometers) past the encounter, Voyager 2’s instruments were put in low power mode to conserve energy.

After the Neptune encounter, NASA formally renamed the entire project the Voyager Interstellar Mission (VIM).

Of the four spacecraft sent out to beyond the environs of the solar system in the 1970s, three of them -- Voyagers 1 and 2 and Pioneer 11 -- were all heading in the direction of the solar apex, i.e., the apparent direction of the Sun’s travel in the Milky Way galaxy, and thus would be expected to reach the heliopause earlier than Pioneer 10 which was headed in the direction of the heliospheric tail.

In November 1998, 21 years after launch, nonessential instruments were permanently turned off, leaving seven instruments still operating.

At 9.6 miles per second (15.4 kilometers per second) relative to the Sun, it will take about 19,390 years for Voyager 2 to traverse a single light year.

Asif Siddiqi

Asif Siddiqi

Beyond Earth: A Chronicle of Deep Space Exploration

Through the turn of the century, NASA's Jet Propulsion Laboratory (JPL) continued to receive ultraviolet and particle fields data. For example, on Jan. 12, 2001, an immense shock wave that had blasted out of the outer heliosphere on July 14, 2000, finally reached Voyager 2. During its six-month journey, the shock wave had plowed through the solar wind, sweeping up and accelerating charged particles. The spacecraft provided important information on high-energy shock-energized ions.

On Aug. 30, 2007, Voyager 2 passed the termination shock and then entered the heliosheath. By Nov. 5, 2017, the spacecraft was 116.167 AU (about 10.8 billion miles or about 17.378 billion kilometers) from Earth, moving at a velocity of 9.6 miles per second (15.4 kilometers per second) relative to the Sun, heading in the direction of the constellation Telescopium. At this velocity, it would take about 19,390 years to traverse a single light-year.

On July 8, 2019, Voyager 2 successfully fired up its trajectory correction maneuver thrusters and will be using them to control the pointing of the spacecraft for the foreseeable future. Voyager 2 last used those thrusters during its encounter with Neptune in 1989.

The spacecraft's aging attitude control thrusters have been experiencing degradation that required them to fire an increasing and untenable number of pulses to keep the spacecraft's antenna pointed at Earth. Voyager 1 had switched to its trajectory correction maneuver thrusters for the same reason in January 2018.

To ensure that both vintage robots continue to return the best scientific data possible from the frontiers of space, mission engineers are implementing a new plan to manage them. The plan involves making difficult choices, particularly about instruments and thrusters.

The Voyager spacecraft against a sparkly blue background

National Space Science Data Center: Voyager 2

A library of technical details and historic perspective.

Colorful book cover for Beyond Earth: A Chronicle of Deep Space Exploration. It features spacecraft cutouts against a bright primary colors.

A comprehensive history of missions sent to explore beyond Earth.

Discover More Topics From NASA

Jupiter against black background of space

IMAGES

  1. Last image of the earth taken by Voyager 1 spacecraft : pics

    last photo from voyager

  2. Last Picture Of Earth From Voyager 1

    last photo from voyager

  3. TIL in February 14, 1990 as the Voyager 1 completed its primary mission

    last photo from voyager

  4. Last Picture Of Earth From Voyager 1

    last photo from voyager

  5. Voyager-1 spacecraft: 40 years of history and interstellar flight

    last photo from voyager

  6. Voyager 1 Last Photo Of Earth

    last photo from voyager

VIDEO

  1. Voyager Images from the Odysseys (NASA Space Photos)

  2. Voyager 2 Sent Back Its Final Images From Space. What Did It Find?

  3. 14th February 1990: Voyager 1 creates the Pale Blue Dot photograph of Earth

  4. What Did Voyager 2 See During its Journey Out Of The Solar System? 1977-2019 (4k UHD)

  5. What Did Voyager 1 See During its Journey Out Of The Solar System? 1977-2019 (4k UHD)

  6. The Last Pictures of Voyager 2: A Historic Journey Beyond our Solar System

COMMENTS

  1. Voyager

    From Voyager's great distance Earth is a mere point of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun.

  2. Pale Blue Dot at 30: Voyager 1's iconic photo of Earth from space

    Earth was one of the last things Voyager 1 saw. The probe took the Pale Blue Dot photo at 0448 GMT on Feb. 14, 1990, just 34 minutes before its cameras were shut off forever.

  3. Pale Blue Dot

    Pale Blue Dot is a photograph of Earth taken on February 14, 1990, by the Voyager 1 space probe from an unprecedented distance of approximately 6 billion kilometers (3.7 billion miles, 40.5 AU), as part of that day's Family Portrait series of images of the Solar System.. In the photograph, Earth's apparent size is less than a pixel; the planet appears as a tiny dot against the vastness of ...

  4. Nasa 're-masters' classic 'Pale Blue Dot' image of Earth

    The "Pale Blue Dot" picture of Planet Earth was acquired by the Voyager 1 probe exactly 30 years ago on Friday - from a distance of about 6 billion km (4 billion miles) miles. To mark the ...

  5. NASA Voyager Probes: 18 Best Pictures As 46-Year Journey ...

    Here are 18 groundbreaking photos from their incredible mission. This montage shows examples of striking images of the solar system Voyager 1 and 2 took on their missions. NASA/JPL/Insider. Nearly ...

  6. 10 Things You Might Not Know About Voyager's Famous 'Pale Blue Dot' Photo

    Acknowledgements: Amanda Barnett, Phil Davis and Preston Dyches contributed to this story. Some of the information in this article came from the account of the solar system family portrait detailed in Kosm ann, Hansen and Sagan, "The Family Portrait of the Solar System: The last set of images taken by Voyager 1 and the fascinating story of how they came to be," 70th International Astronautical ...

  7. Voyager

    Each Voyager space probe carries a gold-plated audio-visual disc in the event that the spacecraft is ever found by intelligent life forms from other planetary systems. Examine the images and sounds of planet earth. Images Voyager Took The Voyager 1 and 2 spacecraft explored Jupiter, Saturn, Uranus and Neptune before starting their journey ...

  8. Twenty years since Voyager's last view

    Twenty years since Voyager's last view. On Sunday comes the twentieth anniversary of an iconic image from the Voyager mission: the "Pale Blue Dot" photo of Earth caught in a sunbeam, which was captured by Voyager 1 as part of a Solar System Family Portrait. This panoramic view of our planetary cradle wouldn't have happened without years of ...

  9. Voyager Image Gallery

    This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986. Credit: NASA/JPL-Caltech. Full Image Details. This image, taken by NASA's Voyager 2 early in the morning of Aug. 23, 1989, is a false color image of Triton, Neptune's largest satellite; mottling in the bright southern hemisphere is present.

  10. Voyager 1

    Voyager 1 has been exploring our solar system for more than 45 years. The probe is now in interstellar space, the region outside the heliopause, or the bubble of energetic particles and magnetic fields from the Sun. Voyager 1 is the first human-made object to venture into interstellar space. Voyager 1 discovered a thin ring around Jupiter and ...

  11. 40 Years Ago: Voyager 1 Explores Saturn

    Today, Voyager 1 is the most distant spacecraft from Earth, more than 14 billion miles away and continuing on its journey out of our solar system. Forty years ago, it made its closest approach to Saturn. Although it was not the first to explore the giant ringed planet, as the Pioneer 11 spacecraft completed the first flyby in 1979, Voyager ...

  12. The best space pictures from the Voyager 1 and 2 missions

    Image: NASA / JPL / Ted Stryk. Saturn as seen by Voyager 1 The last picture from Voyager 1's approach to Saturn in which the entire planet and ring system can be seen in a single frame. Image: NASA/JPL/Björn Jónsson. Voyager 2's best view of Enceladus This was the Voyager mission's best view of Enceladus, captured by Voyager 2 on August 26 ...

  13. Images taken by the Voyager 1 Spacecraft

    Cloud Layers East of the Great Red Spot. Full Resolution: TIFF (1.709 MB) JPEG (63.41 kB) 1996-01-29. Jupiter. Voyager. 908x880x3. PIA00020: Exaggerated Color East of the Great Red Spot. Full Resolution: TIFF (1.728 MB) JPEG (125 kB)

  14. "Pale Blue Dot" photo of Earth is taken

    On Valentine's Day, 1990, 3.7 billion miles away from the sun, the Voyager 1 spacecraft takes a photograph of Earth. The picture, known as Pale Blue Dot, depicts our planet as a nearly ...

  15. 45 Years Ago: Voyager 1 Begins its Epic Journey to the Outer ...

    Fittingly, these were the last pictures returned from either Voyager spacecraft. On Feb. 17, 1998, Voyager 1 became the most distant human-made object, overtaking the Pioneer 10 spacecraft on their way out of the solar system.

  16. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars). Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally.

  17. Voyager

    Images Voyager took of Jupiter. Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and ...

  18. Images taken by the Voyager Spacecraft

    Titania - Highest Resolution Voyager Picture Full Resolution: TIFF (145.1 kB) JPEG (33.78 kB) 1996-01-29: Neptune: Voyager: VG ISS - Narrow Angle: 400x970x1: PIA00045: Neptune ... Early Voyager 1 Images of Jupiter Full Resolution: TIFF (491.5 kB) JPEG (21.78 kB) 1996-09-26: Jupiter: Voyager: Imaging Science Subsystem: 400x400x3 ...

  19. Images taken by the Voyager 2 Spacecraft

    Titania - Highest Resolution Voyager Picture Full Resolution: TIFF (145.1 kB) JPEG (33.78 kB) 1996-01-29: Neptune: Voyager: VG ISS - Narrow Angle: 400x970x1: PIA00045: Neptune - Changes in Great Dark Spot Full ...

  20. NASA Celebrates As 1977's Voyager 1 Phones Home At Last

    The Pale Blue Dot is a photograph of Earth taken Feb. 14, 1990, by NASA's Voyager 1 at a distance of ...[+] 3.7 billion miles (6 billion kilometers) from the sun. The image inspired the title of ...

  21. Good news from Voyager 1, which is now out past the edge of the ...

    Good news from Voyager 1, ... BYLINE: A small dedicated team at NASA's Jet Propulsion Laboratory has spent the last five months trying to figure out how to help Voyager 1, which wasn't easy ...

  22. NASA hears from Voyager 1, the most distant spacecraft from Earth

    NASA has finally heard back from Voyager 1 again in a way that makes sense. The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced ...

  23. Images of Voyager

    2023 Technology Showcase for Planetary Science. James Webb Space Telescope - Science images. Earth Observatory Image of the Day. avatars. Earth Observer. Get an in-depth look at the science instruments aboard the Voyager spacecraft, plus diagrams illustrating the spacecraft's trajectory, orbit and mechanics.

  24. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data.

  25. Voyager 1 transmitting data again after Nasa remotely fixes 46-year-old

    Voyager 1 will come within 1.7 light years of a star in the constellation Ursa Minor, while Voyager 2 will come within a similar distance of a star called Ross 248 in the constellation of Andromeda.

  26. Voyager 1 regains communications with NASA after inventive fix

    Voyager 1 is sending data back to Earth for the first time in 5 months ... Initially designed to last five years, the Voyager 1 and its twin, Voyager 2, launched in 1977 and are the longest ...

  27. After months of silence, Voyager 1 has returned NASA's calls

    For the last five months, it seemed very possible that a 46-year-old conversation had finally reached its end.. Since its launch from Kennedy Space Center on Sept. 5, 1977, NASA's Voyager 1 ...

  28. Voyager 2

    This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on the Voyager 2 narrow angle camera. Credit: NASA/JPL-Caltech Following the Uranus encounter, the spacecraft performed a single midcourse correction Feb. 14, 1986—the largest ever made by Voyager 2—to set it on a precise course ...