NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Earth as seen by Apollo 17 in 1972

Join NASA in Celebrating Earth Day 2024 by Sharing a #GlobalSelfie

NASA Selects New Aircraft-Driven Studies of Earth and Climate Change

NASA Selects New Aircraft-Driven Studies of Earth and Climate Change

This 2024 Earth Day poster is an ocean themed vertical 15x30 illustration created from NASA satellite cloud imagery overlaid on ocean data. The white cloud imagery wraps around shapes, defining three whales and a school of fish. Swirly cloud patterns, called Von Kármán Vortices, create the feeling of movement in the composition. The focal point is a cyclone in the upper third of the poster. At the center flies the recently launched PACE satellite. The ocean imagery – composed of blues, aquas, and greens – is filled with subtle color changes and undulating patterns created by churning sediment, organic matter and phytoplankton.

The Ocean Touches Everything: Celebrate Earth Day with NASA

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Most mountains on the Earth are formed as plates collide and the crust buckles. Not so for the Moon, where mountains are formed as a result of impacts as seen by NASA Lunar Reconnaissance Orbiter.

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

Mars Science Laboratory: Curiosity Rover

Mars Science Laboratory: Curiosity Rover

voyager series spacecraft visited jupiter and its moons

NASA Open Science Initiative Expands OpenET Across Amazon Basin  

voyager series spacecraft visited jupiter and its moons

NASA Motion Sickness Study Volunteers Needed!

voyager series spacecraft visited jupiter and its moons

Students Celebrate Rockets, Environment at NASA’s Kennedy Space Center

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

Sols 4159-4160: A Fully Loaded First Sol

Sols 4159-4160: A Fully Loaded First Sol

voyager series spacecraft visited jupiter and its moons

NASA’s Juno Gives Aerial Views of Mountain, Lava Lake on Io

Hubble Captures a Bright Galactic and Stellar Duo

Hubble Captures a Bright Galactic and Stellar Duo

NASA’s TESS Returns to Science Operations

NASA’s TESS Returns to Science Operations

Astronauts To Patch Up NASA’s NICER Telescope

Astronauts To Patch Up NASA’s NICER Telescope

Hubble Goes Hunting for Small Main Belt Asteroids

Hubble Goes Hunting for Small Main Belt Asteroids

The PACE spacecraft sending data down over radio frequency links to an antenna on Earth. The science images shown are real photos from the PACE mission.

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

Amendment 10: B.9 Heliophysics Low-Cost Access to Space Final Text and Proposal Due Date.

Amendment 10: B.9 Heliophysics Low-Cost Access to Space Final Text and Proposal Due Date.

A natural-color image of mountains in central Pennsylvania taken by Landsat 8

Tech Today: Taking Earth’s Pulse with NASA Satellites

Earth Day 2024: Posters and Virtual Backgrounds

Earth Day 2024: Posters and Virtual Backgrounds

The 2024 Power to Explore logo celebrates the total eclipse with an illustration of the Sun disappearing behind an atomic symbol.

NASA Names Finalists of the Power to Explore Challenge

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

40 years ago: voyager 1 explores jupiter, johnson space center.

Today, Voyager 1 is the most distant spacecraft from Earth, more than 13 billion miles away. Forty years ago, fairly close to the beginning of its incredible journey through and out of our solar system, it was making its closest approach to Jupiter. Although it was not the first to explore the giant planet, Pioneer 10 and 11 completed earlier flybys in 1973 and 1974, respectively, Voyager carried sophisticated instruments to conduct more in-depth investigations. Managed by the Jet Propulsion Laboratory in Pasadena, California, the Voyagers were a pair of spacecraft launched in 1977 to explore the outer planets. Initially targeted only to visit Jupiter and Saturn, Voyager 2 went on to investigate Uranus and Neptune as well, taking advantage of a rare planetary alignment that occurs once every 175 years to use the gravity of one planet to redirect it to the next.

voyager_1_launch

                              Left: Launch of Voyager 1. Middle: Model of the Voyager spacecraft. Right: The first single-frame image of the                               Earth-Moon system, taken by Voyager 1.

The suite of 11 instruments included: an imaging science system consisting of narrow-angle and wide-angle cameras to photograph the planet and its satellites; a radio science system to determine the planet’s physical properties; an infrared interferometer spectrometer to investigate local and global energy balance and atmospheric composition; an ultraviolet spectrometer to measure atmospheric properties; a magnetometer to analyze the planet’s magnetic field and interaction with the solar wind; a plasma spectrometer to investigate microscopic properties of plasma ions; a low energy charged particle device to measure fluxes and distributions of ions; a cosmic ray detection system to determine the origin and behavior of cosmic radiation; a planetary radio astronomy investigation to study radio emissions from Jupiter; a photopolarimeter to measure the planet’s surface composition; and a plasma wave system to study the planet’s magnetosphere.

voyager_instruments

                          Left: Schematic of the Voyager spacecraft, illustrating the science experiments . Right: Trajectory of Voyager 1 through the                          Jovian system.

Two weeks after its launch from Florida on Sep. 5, 1977, Voyager 1 turned its cameras back toward its home planet and took the first single-frame image of the Earth-Moon system, providing a taste of future discoveries at the outer planets. It successfully crossed the asteroid belt between Dec. 10, 1977, and Sep. 8, 1978. The spacecraft began its encounter phase with the Jovian system on Jan. 6, 1979, sending back its first images and taking the first science measurements. On Mar. 5, still inbound toward the planet, it flew at 262,000 miles of Jupiter’s small inner moon Amalthea, taking the first close-up photograph of that satellite revealing it to be oblong in shape and reddish in color. About five hours later, Voyager 1 made its closest approach to Jupiter, flying within 174,000 miles of the planet’s cloud tops. On the outbound leg of its encounter, it flew by and imaged the large satellites Io (closest approach of 12,800 miles), Europa (456,000 miles), Ganymede (71,300 miles), and Callisto (78,600 miles), all discovered by Italian astronomer Galileo in 1610 using his newly invented telescope. The Voyager images revealed each satellite to have a unique appearance, the most remarkable discovery being an active volcano on Io. Voyager 1 also discovered two previously unknown moons orbiting Jupiter, later named Thebe and Metis.  Looking back at Jupiter as it was backlit by the Sun, Voyager 1 discovered that the planet is surrounded by a thin ring. Observations of Jupiter concluded on Apr. 13.

jupiter_with_io_and_europa_from_voyager_1

                                   Left: Voyager 1 image of Jupiter and its Great Red Spot, with Io (at left) and Europa transiting in front of the planet.                                  Right: Composite image of Jupiter’s four large Galilean satellites, shown to scale (clockwise from top left) Io, Europa,                                  Callisto, and Ganymede.

After its successful exploration of the Jovian system, Voyager 1 sailed on toward Saturn. During its encounter in November 1980, the spacecraft returned a wealth of information about the planet, its spectacular rings and its satellites especially Titan, known to have a dense atmosphere. Saturn’s gravity imparted enough acceleration on Voyager 1 that it achieved escape velocity from the solar system.  More than 41 years after its launch, several of the spacecraft’s instruments are still returning useful data about conditions on the very edges of the solar system and even beyond.  In August 2012, Voyager 1 crossed the heliopause, the boundary between the heliosphere, the bubble-like region of space created by the Sun, and the interstellar medium.  It is expected that Voyager 1 will continue to return data from interstellar space until about 2025. And just in case it may one day be found by an alien intelligence, Voyager 1 and its twin carry gold plated records that contain information about its home planet, including recordings of terrestrial sounds, music and greetings in 55 languages. Instructions on how to play the record are also included.

jupiter_ring_from_voyager_1

                                  Left: Voyager 1 took the image of Jupiter backlit by the Sun, and discovered that the planet has a thin ring system.                                  Right: The gold disc carried by each Voyager.

voyager series spacecraft visited jupiter and its moons

  • Login/Register
  • Solar System
  • Exotic Objects
  • Upcoming Events
  • Deep-Sky Objects
  • Observing Basics
  • Telescopes and Equipment
  • Astrophotography
  • Space Exploration
  • Human Spaceflight
  • Robotic Spaceflight
  • The Magazine

Voyager left NASA ‘happily bewildered’ by what it saw at Jupiter

ASYVJ1017_03

For centuries, humanity could view this giant world only through ground-based telescopes. But in 1973 and 1974, respectively, the Pioneer 10 and 11 spacecraft raced past the planet, providing the first close-up images of its stormy atmosphere, probing its internal structure, and charting its intense radiation belts and magnetic field. The Pioneer probes blazed a trail for further exploration of the outer solar system. Even as scientists reveled in the data the probes returned, NASA already was working on a far more ambitious encore.

ASYVJ1017_09REV

“It’s been a remarkable journey,” says Voyager project scientist Ed Stone at the California Institute of Technology in Pasadena. “We keep discovering things nobody knew we were going to discover.” He says both spacecraft may be able to return measurements from a single science instrument until 2030 if their power sources — called radioisotope thermoelectric generators — hold out as expected.

Encounter with Jove

On January 6, 1979, Voyager 1 was 36 million miles (58 million kilometers) from Jupiter and two months from its closest approach. Views of the planet’s cloudy, banded disk already exceeded the best images from Earth. Among other assignments, the probe began accumulating a time-lapse movie by taking images every 10 hours, one for each Jupiter rotation.

By early February, the resolution and image quality were comparable to the best pictures returned by the Pioneers. From that point on, Jupiter would be seen as never before.

When viewed from Earth through a small telescope, the planet’s atmosphere shows alternating bright white zones and darker brown belts. These are the visible manifestations of east-west jet streams that alternate direction from the equator to the poles and carry oval-shaped weather systems of all sizes.

ASYVJ1017_01

The planet’s largest feature, a vast southern storm called the Great Red Spot, had been observed continuously from Earth for 150 years. But now, for the first time, scientists could study its rotation and watch it interact with neighboring features. Large enough to hold a pair of Earth-sized planets, the Great Red Spot rolls between two jet streams and completes a rotation in about six days. It spins counterclockwise, the opposite direction as hurricanes in Earth’s Southern Hemisphere, classifying it as a high-pressure system. Its cloud tops extend nearly 5 miles (8km) above neighboring layers. Although winds whip around its periphery at 425 mph (680 km/h), the interior is calm. Its size and position vary slightly, and long-term ground-based monitoring shows that the longest-lived storm known to science is shrinking steadily.

Amy Simon at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, leads a team studying Jupiter with the Hubble Space Telescope. The observations show the storm’s long axis is half what was reported in the 1880s and about 30 percent smaller than during the Voyager flybys. And since 2014, the Great Red Spot has turned an unusually intense shade of orange.

ASYVJ1017_02

In 1998, two of three 60-year-old white oval storms in a cloud band south of the Great Red Spot merged, and in early 2000, the third oval joined them. The resulting weather system, named Oval BA, is about half the size of the Great Red Spot and persists today. In August 2005, amateur astronomers noticed it was acquiring a reddish color. The hue gradually deepened; by 2006, the storm was nicknamed “the Little Red Spot” and “Red Spot Jr.”

Yet despite the Voyager probes and later missions, vital questions about Jupiter’s atmosphere remain. Why are the jet streams and large storms stable for so long? What’s the energy source for the jets? And do the winds continue into the planet’s interior?

Diving into Jupiter

The top of Jupiter’s atmosphere consists of haze layers formed by complex hydrocarbons like ethane, ethylene, and acetylene. These chemicals assemble from the fragments of methane molecules broken apart by solar UV, a process similar to how smog forms in Earth’s atmosphere. About 25 miles (40km) deeper, the pressure approaches 60 percent of that at Earth’s surface (1 bar), but the temperature is only –193° F (–125° C). A deck of bright white clouds formed by ammonia ice crystals occupies this level.

ASYVJ1017_05

Minute frequency changes in spacecraft radio signals allow scientists to map the structure of Jupiter’s gravitational field; this enables them to develop models of what lies beneath the clouds. Pressures and temperatures increase steadily, but the hydrogen atmosphere simply grows denser and hotter with depth until, hundreds of miles beneath the clouds, molecular hydrogen starts to resemble a hot liquid. At depths 10 times greater, only 20 percent of the way to Jupiter’s center, pressures approach a million bars, and temperatures soar to 10,000° F (5,700° C) — nearly as hot as the Sun’s surface. Here the interior transforms into a more exotic substance called liquid metallic hydrogen, an electrically conductive soup of protons and electrons that makes up most of Jupiter’s mass.

Some 28,000 miles (45,000km) farther down, about 80 percent of the way to the planet’s center, the composition may change to a mix of water, methane, and ammonia at enormous temperatures and pressures. Another 4,400 miles (7,000km) down, and we’re 10 percent from the center; the pressure rises to around 40 million bars and the temperature to some 40,000° F (22,000° C). At this point, Jupiter’s composition may gradually morph into a dense core, perhaps containing up to 20 Earth masses in a mix of rock and iron that may also include water, methane, and ammonia.

At these pressures, dense materials may become soluble in liquid hydrogen, some scientists suggest. This means Jupiter’s original core may have dissolved partially or completely away, its high-density materials dispersed throughout a larger portion of the planet. One of the main goals of NASA’s Juno mission, which has been orbiting the planet since July 2016, is to answer the many remaining questions about how the solar system’s largest world is put together. (See “Under the veil,” above.)

Magnetic tango

Like Earth, Jupiter generates a magnetic field, which at the cloud tops is about 15 times stronger than our planet’s. The field traps, stores, and controls the flow of charged particles inside it, forming a vast, comet-shaped bubble — called a magnetosphere — that shields the planet from direct exposure to the solar wind. Pressure from the solar wind pushes the Sun-facing side into a rounded bow shock that slows and deflects most of the incoming charged particles in much the same way that water flows around the bow of a moving ship. The opposite side tapers into an immense magnetotail whose farthest portions wave and flap like the tattered end of a windsock.

ASYVJ1017_10

Between February 28 and March 2, 1979, the magnetosphere seemed to be playing hard to get with the approaching Voyager 1. The solar wind was gusty, producing unusually strong and variable pressures that pushed the bow shock closer to the planet. When the wind eased, the bow shock re-expanded. Pioneers 10 and 11 made their crossings 50 diameters from Jupiter, but Voyager 1 crossed it five times, the last at scarcely half that range (28 diameters).

On March 5, the spacecraft made its closest approach, passing within 128,400 miles (206,700km) of Jupiter’s cloud tops, barely one-third the distance at which Voyager 2 would pass July 9. Scientists selected this path so they could measure a hypothesized electrical circuit connecting Jupiter and its moon Io, and it took Voyager 1 deep into the most hazardous radiation belts in the solar system. Based on measurements from the Pioneers, the Voyager design included shielding that hardened sensitive electronics to the bombardment of high-energy electrons, protons, and ions stored in Jupiter’s equivalent of Earth’s Van Allen Belts. But an unprotected human passenger riding aboard Voyager 1 during closest approach would have received a thousand times the lethal radiation dose.

galieanmoons

Four new worlds

An extraordinary planet deserves extraordinary moons, and Jupiter’s four big satellites do not disappoint. Discovered by Galileo Galilei in 1610, they are Io, Europa, Ganymede, and Callisto (in order of distance from the planet). Ganymede, the largest and most massive moon in the solar system, is slightly bigger than Mercury, while Callisto is nearly the planet’s diameter. Both Io and Europa are roughly the size of Earth’s Moon.

The moons’ complexity and individuality, which scientists hardly suspected despite centuries of telescopic observations, proved a major surprise of the Voyager missions. Reporting their results in the journal Science three months after the Voyager 1 encounter, the imaging team noted that the large moons do not closely resemble either the planets in the inner solar system or one another. “The sense of novelty,” they wrote, “would probably not have been greater had we explored a different solar system.”

“They’re quite distinct,” says Stone, “and I think the one thing we have learned is that nature is remarkably diverse, and you don’t see replicas. Each body seems to have its own life history written on the surface and in its interior.”

There had long been hints that the big moons might be doing something interesting. Galileo’s 17th-century plots showed that Europa and Io always meet up on the side of Jupiter exactly opposite from where Europa and Ganymede do. In the 7.15 days it takes Ganymede to go around Jupiter once, Europa orbits twice and Io four times. This 1:2:4 resonance forces the moons’ orbits to maintain a slight eccentricity, which in turn causes their bodies to flex slightly due to tides raised by Jupiter’s gravity. Just as repeatedly bending a paper clip warms up the metal, this forced flexing warms the interiors of Jupiter’s big moons.

ASYVJ1017_13

On March 8, as Voyager 1 raced out of the Jupiter system, its camera captured a routine navigation image of a crescent Io as part of a program to refine knowledge of the spacecraft’s trajectory. The next day, JPL engineer Linda Morabito enhanced this image to locate background stars and uncovered another crescent shape on Io’s sunlit limb. It looked like the edge of another satellite peeking out from behind Io, but scientists determined that an unknown satellite so large would have been detectable from Earth. “No one understood what they were seeing, reinforcing the degree of difficulty associated with interpreting this image,” she later wrote.

ASYVJ1017_11

Scientists now know of at least 150 active volcanoes on Io. Some of them blast umbrella-shaped plumes containing sodium, potassium, sulfur, sulfur dioxide, and more to altitudes as high as 310 miles (500km). Some of the ejecta falls back to paint Io’s terrain in garish hues, and the rest forms a thin, distended atmosphere around the moon. Particle interactions ionize some of these atoms, and they then become swept up in Jupiter’s fast-moving magnetic field, which rotates with the planet’s 10-hour rotation. “About a ton per second of that material is picked up by the jovian magnetic field, and that mass of stuff inflates the Jupiter magnetosphere to about twice the size it should be,” Stone says.

The ionized gas spreads along Io’s orbit to form a doughnut-shaped cloud called the Io plasma torus. Some of the heavy ions in the torus migrate outward, and their pressure supersizes the magnetosphere. As Io moves through the torus, it continuously generates an electrical current that flows along a conduit, called the Io flux tube, linked to Jupiter’s upper atmosphere. Two billion kilowatts flow through the flux tube, comparable to the average global power consumption on Earth. The Voyager 1 team deliberately tried to pass through the tube, but the material around Io shifted its position from what was expected, and the spacecraft instead flew alongside it.

While imaging from Earth in 1993, Connerney and his colleagues discovered a spot of infrared emission in Jupiter’s polar atmosphere. The glow tracked with Io in its orbit and arose from energy coursing down the flux tube. But Io isn’t alone in this regard. In 2002, Hubble imaged Io’s spot in the UV and found two more glows from Europa and Ganymede, showing they generate their own flux tubes. “The system is highly coupled and connected, where the magnetic fields and the particles are all interacting with the moons,” Stone says. And the phenomenon isn’t unique to Jupiter. In 2011, scientists identified a UV spot associated with the active moon Enceladus in images from the Cassini mission orbiting Saturn.

ASYVJ1017_17

The outer trio

Europa, the next moon out from Jupiter, couldn’t be more different from its siblings. Low-resolution images from Voyager 1 showed a bright surface of frozen water with no discernible craters, along with hints of dark linear features. Voyager 2 passed much closer to Europa on July 9, and its images revealed frozen plains crisscrossed by dark streaks, giving it the look of a cracked egg. Europa’s surface is the smoothest in the solar system. Features display so little topographical relief that imaging team member Larry Soderblom compared the moon to a billiard ball. Later that year, the scientists who explained the heating of Io suggested that tidal flexing of Europa could provide enough heat to sustain an ocean beneath its icy shell, which is widely thought to be 10 to 15 miles (16 to 24km) thick. The ocean itself may be at least 30 miles (48km) deep, or more than 10 times the average depth of Earth’s seas.

In fact, several lines of evidence now support the presence of briny global oceans within Europa, Ganymede, and Callisto, each containing more water than Earth’s seas. NASA’s Galileo spacecraft, which in 1995 became the first to orbit Jupiter, flew close to these moons and found that Jupiter’s rotating magnetic field induces currents in electrically conducting layers within them. These currents, in turn, generate secondary magnetic fields Galileo could detect. Europa’s induced response matches what researchers would expect for a salty subsurface ocean many miles thick. And different teams using Hubble in 2012 and 2016 discovered tantalizing evidence that Europa occasionally erupts plumes of water vapor reaching heights of 125 miles (200km), suggesting the icy shell may be quite thin in some locations.

ASYVJ1017_18

The Galileo mission revealed in 1996 that Ganymede generates its own permanent magnetic field, the only moon in the solar system known to do so, and therefore makes its own miniature magnetosphere. This complicates the interpretation of its induced field, but recent models, as well as Hubble observations of Ganymede’s aurorae, suggest the interior contains shells of different phases of water ice separated by salty seas.

Callisto, the farthest of Jupiter’s big moons, hosts the solar system’s most heavily cratered and geologically ancient surface. Its terrain is nearly saturated with bright impact craters. The largest visible feature, named Valhalla, resembles a bull’s-eye about 2,200 miles (3,600km) across, the frozen remnant of a giant impact. Galileo spacecraft observations indicate the presence of a salty, subsurface global ocean despite little tidal heating at Callisto now. Perhaps ammonia and other contaminants lower the freezing point enough for a liquid layer to survive. Opening act

The Jupiter flybys mark the first chapter in the Voyagers’ exploration of the outer solar system. They provided new views of an enormous, complex, and dynamic atmosphere that is still far from understood. They explored a vast magnetosphere loaded with particles from its moons, especially Io, and intimately connected to them. Close-ups of unique new worlds uncovered incredible properties, including the first example of active extraterrestrial volcanism and the first clues that frozen moons could sport internal seas. Further discoveries included a faint ring of dust extending 80,000 miles (129,000km) from the planet’s center, and two new moons, Metis and Adrastea, orbiting just beyond it. The probes also found a third satellite, Thebe, in a more distant orbit, though still well inside Io’s.

With Jupiter now in the rearview mirror, Voyager scientists could begin digging deeper into the data — and wondering what awaited them at their next destination, Saturn.

An external pallet packed with old nickel-hydrogen batteries is pictured shortly after mission controllers in Houston commanded the Canadarm2 robotic arm to release it into space.

The metal chunk that burst through a Florida home came from the ISS

Jupiter image taken by the James Webb Space Telescope. Credit: NASA.

Jupiter: Size, distance from the Sun, orbit

Jupiter's moon Io

Jupiter’s moon Io has likely been active for our solar system’s entire history

Scientists could one day find traces of life on Enceladus, an ocean-covered moon orbiting Saturn. Credit: NASA/JPL-Caltech, CC BY-SA

The search is on for extraterrestrial life on worlds like Enceladus

Orion's "selfie" of itself and the Moon. Orion will carry astronauts on several space missions.

An updated list of space missions: Current and upcoming voyages

voyager series spacecraft visited jupiter and its moons

The largest digital camera ever made for astronomy is done

Valles Marineris, the grand canyon of Mars, slices its way across this view of the Red Planet made with the Viking Orbiter 1. Credit: NASA

NASA seeks faster, cheaper options to return Mars samples to Earth

NASA's Ingenuity helicopter unlocked its rotor blades, allowing them to spin freely, on April 7, 2021. Credit: NASA.

NASA bids farewell to the Ingenuity Mars Helicopter with new photos

Europa was captured by JunoCam, during the mission's close flyby on Sept. 29, 2022. The circular dark feature at the lower right is Callanish Crater.

Circular patterns on Europa suggest how deep a lively ocean may be

NASA Logo

The most distant human-made object

Computer-generated view of a Voyager spacecraft far from the Sun.

No spacecraft has gone farther than NASA's Voyager 1. Launched in 1977 to fly by Jupiter and Saturn, Voyager 1 crossed into interstellar space in August 2012 and continues to collect data.

Mission Type

What is Voyager 1?

Voyager 1 has been exploring our solar system for more than 45 years. The probe is now in interstellar space, the region outside the heliopause, or the bubble of energetic particles and magnetic fields from the Sun.

  • Voyager 1 was the first spacecraft to cross the heliosphere, the boundary where the influences outside our solar system are stronger than those from our Sun.
  • Voyager 1 is the first human-made object to venture into interstellar space.
  • Voyager 1 discovered a thin ring around Jupiter and two new Jovian moons: Thebe and Metis.
  • At Saturn, Voyager 1 found five new moons and a new ring called the G-ring.

In Depth: Voyager 1

Voyager 1 was launched after Voyager 2, but because of a faster route, it exited the asteroid belt earlier than its twin, having overtaken Voyager 2 on Dec. 15, 1977.

Voyager 1 at Jupiter

Voyager 1 began its Jovian imaging mission in April 1978 at a range of 165 million miles (265 million km) from the planet. Images sent back by January the following year indicated that Jupiter’s atmosphere was more turbulent than during the Pioneer flybys in 1973–1974.

Beginning on January 30, Voyager 1 took a picture every 96 seconds for a span of 100 hours to generate a color timelapse movie to depict 10 rotations of Jupiter. On Feb. 10, 1979, the spacecraft crossed into the Jovian moon system and by early March, it had already discovered a thin (less than 30 kilometers thick) ring circling Jupiter.

Voyager 1’s closest encounter with Jupiter was at 12:05 UT on March 5, 1979 at a range of about 174,000 miles (280,000 km). It encountered several of Jupiter’s Moons, including Amalthea, Io, Europa, Ganymede, and Callisto, returning spectacular photos of their terrain, opening up completely new worlds for planetary scientists.

The most interesting find was on Io, where images showed a bizarre yellow, orange, and brown world with at least eight active volcanoes spewing material into space, making it one of the most (if not the most) geologically active planetary body in the solar system. The presence of active volcanoes suggested that the sulfur and oxygen in Jovian space may be a result of the volcanic plumes from Io which are rich in sulfur dioxide. The spacecraft also discovered two new moons, Thebe and Metis.

Voyager 1 at Saturn

Saturn

Following the Jupiter encounter, Voyager 1 completed an initial course correction on April 9, 1979 in preparation for its meeting with Saturn. A second correction on Oct. 10, 1979 ensured that the spacecraft would not hit Saturn’s moon Titan.

Its flyby of the Saturn system in November 1979 was as spectacular as its previous encounter. Voyager 1 found five new moons, a ring system consisting of thousands of bands, wedge-shaped transient clouds of tiny particles in the B ring that scientists called “spokes,” a new ring (the “G-ring”), and “shepherding” satellites on either side of the F-ring—satellites that keep the rings well-defined.

During its flyby, the spacecraft photographed Saturn’s moons Titan, Mimas, Enceladus, Tethys, Dione, and Rhea. Based on incoming data, all the moons appeared to be composed largely of water ice. Perhaps the most interesting target was Titan, which Voyager 1 passed at 05:41 UT on November 12 at a range of 2,500 miles (4,000 km). Images showed a thick atmosphere that completely hid the surface. The spacecraft found that the moon’s atmosphere was composed of 90% nitrogen. Pressure ad temperature at the surface was 1.6 atmospheres and 356 °F (–180°C), respectively.

Atmospheric data suggested that Titan might be the first body in the solar system (apart from Earth) where liquid might exist on the surface. In addition, the presence of nitrogen, methane, and more complex hydrocarbons indicated that prebiotic chemical reactions might be possible on Titan.

Voyager 1’s closest approach to Saturn was at 23:46 UT on 12 Nov. 12, 1980 at a range of 78,000 miles(126,000 km).

Voyager 1’s ‘Family Portrait’ Image

Following the encounter with Saturn, Voyager 1 headed on a trajectory escaping the solar system at a speed of about 3.5 AU per year, 35° out of the ecliptic plane to the north, in the general direction of the Sun’s motion relative to nearby stars. Because of the specific requirements for the Titan flyby, the spacecraft was not directed to Uranus and Neptune.

The final images taken by the Voyagers comprised a mosaic of 64 images taken by Voyager 1 on Feb. 14, 1990 at a distance of 40 AU of the Sun and all the planets of the solar system (although Mercury and Mars did not appear, the former because it was too close to the Sun and the latter because Mars was on the same side of the Sun as Voyager 1 so only its dark side faced the cameras).

This was the so-called “pale blue dot” image made famous by Cornell University professor and Voyager science team member Carl Sagan (1934-1996). These were the last of a total of 67,000 images taken by the two spacecraft.

Voyager 1’s Interstellar Mission

All the planetary encounters finally over in 1989, the missions of Voyager 1 and 2 were declared part of the Voyager Interstellar Mission (VIM), which officially began on Jan. 1, 1990.

The goal was to extend NASA’s exploration of the solar system beyond the neighborhood of the outer planets to the outer limits of the Sun’s sphere of influence, and “possibly beyond.” Specific goals include collecting data on the transition between the heliosphere, the region of space dominated by the Sun’s magnetic field and solar field, and the interstellar medium.

On Feb. 17, 1998, Voyager 1 became the most distant human-made object in existence when, at a distance of 69.4 AU from the Sun when it “overtook” Pioneer 10.

On Dec. 16, 2004, Voyager scientists announced that Voyager 1 had reported high values for the intensity for the magnetic field at a distance of 94 AU, indicating that it had reached the termination shock and had now entered the heliosheath.

The spacecraft finally exited the heliosphere and began measuring the interstellar environment on Aug. 25, 2012, the first spacecraft to do so.

On Sept. 5, 2017, NASA marked the 40th anniversary of its launch, as it continues to communicate with NASA’s Deep Space Network and send data back from four still-functioning instruments—the cosmic ray telescope, the low-energy charged particles experiment, the magnetometer, and the plasma waves experiment.

The Golden Record

The Titan/Centaur-6 launch vehicle was moved to Launch Complex 41 at NASA's Kennedy Space Center in Florida to complete checkout procedures in preparation for launch.

Each of the Voyagers contain a “message,” prepared by a team headed by Carl Sagan, in the form of a 12-inch (30 cm) diameter gold-plated copper disc for potential extraterrestrials who might find the spacecraft. Like the plaques on Pioneers 10 and 11, the record has inscribed symbols to show the location of Earth relative to several pulsars.

The records also contain instructions to play them using a cartridge and a needle, much like a vinyl record player. The audio on the disc includes greetings in 55 languages, 35 sounds from life on Earth (such as whale songs, laughter, etc.), 90 minutes of generally Western music including everything from Mozart and Bach to Chuck Berry and Blind Willie Johnson. It also includes 115 images of life on Earth and recorded greetings from then U.S. President Jimmy Carter (1924– ) and then-UN Secretary-General Kurt Waldheim (1918–2007).

By January 2024, Voyager 1 was about 136 AU (15 billion miles, or 20 billion kilometers) from Earth, the farthest object created by humans, and moving at a velocity of about 38,000 mph (17.0 kilometers/second) relative to the Sun.

The Voyager spacecraft against a sparkly blue background

National Space Science Data Center: Voyager 1

A library of technical details and historic perspective.

Colorful book cover for Beyond Earth: A Chronicle of Deep Space Exploration. It features spacecraft cutouts against a bright primary colors.

Beyond Earth: A Chronicle of Deep Space Exploration

A comprehensive history of missions sent to explore beyond Earth.

Discover More Topics From NASA

Jupiter against black background of space

Our Solar System

An illustration of a slice of a bright orange sun, with planets, a comet and asteroids against a blue-black backround.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Earth as seen by Apollo 17 in 1972

Join NASA in Celebrating Earth Day 2024 by Sharing a #GlobalSelfie

NASA Selects New Aircraft-Driven Studies of Earth and Climate Change

NASA Selects New Aircraft-Driven Studies of Earth and Climate Change

This 2024 Earth Day poster is an ocean themed vertical 15x30 illustration created from NASA satellite cloud imagery overlaid on ocean data. The white cloud imagery wraps around shapes, defining three whales and a school of fish. Swirly cloud patterns, called Von Kármán Vortices, create the feeling of movement in the composition. The focal point is a cyclone in the upper third of the poster. At the center flies the recently launched PACE satellite. The ocean imagery – composed of blues, aquas, and greens – is filled with subtle color changes and undulating patterns created by churning sediment, organic matter and phytoplankton.

The Ocean Touches Everything: Celebrate Earth Day with NASA

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Most mountains on the Earth are formed as plates collide and the crust buckles. Not so for the Moon, where mountains are formed as a result of impacts as seen by NASA Lunar Reconnaissance Orbiter.

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

Mars Science Laboratory: Curiosity Rover

Mars Science Laboratory: Curiosity Rover

voyager series spacecraft visited jupiter and its moons

NASA Open Science Initiative Expands OpenET Across Amazon Basin  

voyager series spacecraft visited jupiter and its moons

NASA Motion Sickness Study Volunteers Needed!

voyager series spacecraft visited jupiter and its moons

Students Celebrate Rockets, Environment at NASA’s Kennedy Space Center

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

Sols 4159-4160: A Fully Loaded First Sol

Sols 4159-4160: A Fully Loaded First Sol

voyager series spacecraft visited jupiter and its moons

NASA’s Juno Gives Aerial Views of Mountain, Lava Lake on Io

Hubble Captures a Bright Galactic and Stellar Duo

Hubble Captures a Bright Galactic and Stellar Duo

NASA’s TESS Returns to Science Operations

NASA’s TESS Returns to Science Operations

Astronauts To Patch Up NASA’s NICER Telescope

Astronauts To Patch Up NASA’s NICER Telescope

Hubble Goes Hunting for Small Main Belt Asteroids

Hubble Goes Hunting for Small Main Belt Asteroids

The PACE spacecraft sending data down over radio frequency links to an antenna on Earth. The science images shown are real photos from the PACE mission.

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

Amendment 10: B.9 Heliophysics Low-Cost Access to Space Final Text and Proposal Due Date.

Amendment 10: B.9 Heliophysics Low-Cost Access to Space Final Text and Proposal Due Date.

A natural-color image of mountains in central Pennsylvania taken by Landsat 8

Tech Today: Taking Earth’s Pulse with NASA Satellites

Earth Day 2024: Posters and Virtual Backgrounds

Earth Day 2024: Posters and Virtual Backgrounds

The 2024 Power to Explore logo celebrates the total eclipse with an illustration of the Sun disappearing behind an atomic symbol.

NASA Names Finalists of the Power to Explore Challenge

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

NASA Science Live: Juno Spacecraft Makes Historic Flyby of Jupiter’s Moons

NASA’s Juno spacecraft has been in orbit around Jupiter for almost 8 years, offering it the unique opportunity to make close flybys of two of the planet’s intriguing moons – […]

voyager series spacecraft visited jupiter and its moons

  • Open Video Player
  • WhatsApp https://plus.nasa.gov/scheduled-video/nasa-science-live-juno-spacecraft-makes-historic-flyby-of-jupiters-moons/ Copy URL to clipboard> Share
  • ICS File Add to Calendar

NASA’s Juno spacecraft has been in orbit around Jupiter for almost 8 years, offering it the unique opportunity to make close flybys of two of the planet’s intriguing moons – Io and Europa. Join NASA experts Thursday, March 7 at 1 p.m. ET as we delve into these enigmatic worlds to learn how scientists are unraveling their secrets. From Io’s tumultuous volcanic activity to Europa’s ice-covered ocean depths, discover the latest findings from the Juno spacecraft. Have questions? Submit them by using #askNASA.

  • Page Last Updated: Apr 20, 2024
  • Responsible NASA Official: Rebecca Sirmons

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

galleries  /  images voyager took

Images voyager took of jupiter.

Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and its encounter continued into August. They took more than 33,000 pictures of Jupiter and its five major satellites.

For a summary of the more important science results from the Voyager encounters with Jupiter, click here .

Jupiter and two moons.

Portion of jupiter and moons., jupiter’s ring., jupiter’s moon io with active volcanoes., jupiter’s moon callisto., jupiter’s great red spot., closeup of jupiter’s great red spot..

Media Get Close-Up of NASA’s Jupiter-Bound Europa Clipper

Members of the media visited a clean room at JPL April 11

Members of the media visited a clean room at JPL April 11 to get a close-up look at NASA’s Europa Clipper spacecraft and interview members of the mission team. The spacecraft is expected to launch in October 2024 on a six-year journey to the Jupiter system, where it will study the ice-encased moon Europa.

The viewing gallery above High Bay 1 in JPL’s historic Spacecraft Assembly Facility

The viewing gallery above High Bay 1 in JPL’s historic Spacecraft Assembly Facility provided members of the media with a vantage point to observe the clean room where Europa Clipper was put together.

Europa Clipper Science Communications Lead Cynthia Phillips explains the science of the mission to members of the media

Europa Clipper Science Communications Lead Cynthia Phillips explains the science of the mission to members of the media in von Kármán Auditorium at the agency’s Jet Propulsion Laboratory on April 11. A cutaway model showing the moon’s layers can be seen behind Phillips.

Excitement is mounting as the largest spacecraft NASA has ever built for a planetary mission gets readied for an October launch.

Engineers at NASA’s Jet Propulsion Laboratory in Southern California are running final tests and preparing the agency’s Europa Clipper spacecraft for the next leg of its journey: launching from NASA’s Kennedy Space Center in Florida. Europa Clipper, which will orbit Jupiter and focus on the planet’s ice-encased moon Europa, is expected to leave JPL later this spring. Its launch period opens on Oct. 10.

Members of the media put on “bunny suits” — outfits to protect the massive spacecraft from contamination — to see Europa Clipper up close in JPL’s historic Spacecraft Assembly Facility on Thursday, April 11. Project Manager Jordan Evans, Launch-to-Mars Mission Manager Tracy Drain, Project Staff Scientist Samuel Howell, and Assembly, Test, and Launch Operations Cable Harness Engineer Luis Aguila were on the clean room floor, while Deputy Project Manager Tim Larson, and Mission Designer Ricardo Restrepo were in the gallery above to explain the mission and its goals.

Never Miss a Discovery

Planning of the mission began in 2013 , and Europa Clipper was officially confirmed by NASA as a mission in 2019. The trip to Jupiter is expected to take about six years, with flybys of Mars and Earth. Reaching the gas giant in 2030, the spacecraft will orbit Jupiter while flying by Europa dozens of times, dipping as close as 16 miles (25 kilometers) from the moon’s surface to gather data with its powerful suite of science instruments . The information will help scientists learn about the ocean beneath the moon’s icy shell, map Europa’s surface composition and geology, and hunt for any potential plumes of water vapor that may be venting from the crust.

“After over a decade of hard work and problem-solving, we’re so proud to show the nearly complete Europa Clipper spacecraft to the world,” said Evans. “As critical components came in from institutions across the globe, it’s been exciting to see parts become a greater whole. We can’t wait to get this spacecraft to the Jupiter system.”

At the event, a cutaway model showing the moon’s layers and a globe of the moon helped journalists learn why Europa is such an interesting object of study. On hand with the details were Project Staff Scientist and Assistant Science Systems Engineer Kate Craft from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and, from JPL, Project Scientist Robert Pappalardo, Deputy Project Scientist Bonnie Buratti, and Science Communications Lead Cynthia Phillips.

Beyond Earth, Europa is considered one of the most promising potentially habitable environments in our solar system. While Europa Clipper is not a life-detection mission, its primary science goal is to determine whether there are places below the moon’s icy surface that could support life.

When the main part of the spacecraft arrives at Kennedy Space Center in a few months, engineers will finish preparing Europa Clipper for launch on a SpaceX Falcon Heavy rocket, attaching its giant solar arrays and carefully tucking the spacecraft inside the capsule that rides on top of the rocket. Then Europa Clipper will be ready to begin its space odyssey.

More About the Mission

Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission.

Find more information about Europa here:

europa.nasa.gov

News Media Contact

Jia-Rui Cook / Val Gratias / Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

626-318-2141 / 818-354-0724 / 818-393-6215

[email protected] / [email protected] / [email protected]

Karen Fox / Charles Blue

NASA Headquarters

301-286-6284 / 202-802-5345

[email protected] / [email protected]

China's experimental moon satellites beam back lunar imagery (video, photo)

Tiandu-1 and 2 are testing lunar communications and navigation tech.

A pair of small experimental satellites have begun tests related to future lunar communication and navigation services for China's moon ambitions.

The Tiandu-1 and Tiandu-2 satellites launched toward the moon along with the Queqiao-2 lunar communications relay satellite on a Long March 8 rocket on March 19. The latter spacecraft will support a major mission — the upcoming Chang'e 6 lunar far side sample return effort, which could launch as soon as next month —but the former are intended as a pathfinder for future lunar infrastructure.

China's Deep Space Exploration Lab (DSEL) stated on April 13 that Tiandu-1 and Tiandu-2 had carried out tests of high-reliability transmission and routing between Earth and the lunar surface. 

Related: China to launch 1st-ever sample return mission to moon's far side in 2024

black and white image of the moon's cratered surface, with a blurry and distant earth in the background

One of the pair also transmitted an infrared image showing the heavily cratered far side of the moon , including a view of a distant planet Earth.

The Tiandu pair entered lunar orbit on April 3 and are flying in formation around 124 miles (200 kilometers) apart. Tiandu-1 weighs 134 pounds (61 kilograms) and is equipped with a Ka-band dual-frequency communicator, a laser retroreflector and a space router. Tiandu-2 weighs 33 lbs (15 kg) and carries communication and navigation devices.

—  How China will land astronauts on the moon by 2030

 — China names the spacecraft that will put its astronauts on the moon (video)

— China working on new moon rover for 2026 mission to lunar south pole

DSEL stated that the test satellites will conduct further lunar communication and navigation technology experiments. The results will guide the design and construction of the planned International Lunar Research Station ( ILRS ) and a Queqiao satellite constellation for lunar communication, navigation and remote sensing.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Andrew Jones

Andrew is a freelance space journalist with a focus on reporting on China's rapidly growing space sector. He began writing for Space.com in 2019 and writes for SpaceNews, IEEE Spectrum, National Geographic, Sky & Telescope, New Scientist and others. Andrew first caught the space bug when, as a youngster, he saw Voyager images of other worlds in our solar system for the first time. Away from space, Andrew enjoys trail running in the forests of Finland. You can follow him on Twitter  @AJ_FI .

Why is it so hard to send humans back to the moon?

Are we prepared for Chinese preeminence on the moon and Mars? (op-ed)

Saturn's ocean moon Enceladus is able to support life − my research team is working out how to detect extraterrestrial cells there

Most Popular

  • 2 Why is it so hard to send humans back to the moon?
  • 3 Eclipse expert Jamie Carter wins media award for extensive solar eclipse coverage
  • 4 'Devil Comet' 12P/Pons-Brooks reaches peak brightness tonight. Here's how to see it
  • 5 Cosmonaut Muhammed Faris, first Syrian in space, dies at 72

voyager series spacecraft visited jupiter and its moons

IMAGES

  1. NASA’s Juno Spacecraft Exploring Jupiter’s Inner Moons During Extended

    voyager series spacecraft visited jupiter and its moons

  2. Voyager 2 Transformed Our Ideas of Jupiter's Moons 40 Years Ago

    voyager series spacecraft visited jupiter and its moons

  3. Voyager-1 spacecraft: 40 years of history and interstellar flight

    voyager series spacecraft visited jupiter and its moons

  4. What Voyager 1 Learned at Jupiter Forty Years Ago

    voyager series spacecraft visited jupiter and its moons

  5. Major Accomplishments of NASA's Voyager 1 and 2 Spacecraft

    voyager series spacecraft visited jupiter and its moons

  6. The Voyager Mission

    voyager series spacecraft visited jupiter and its moons

VIDEO

  1. Jupiter's Secrets The Voyager 2 Revelation #space #astronomy

  2. Voyager 1 Just Made Contact with a Highly Advanced Object in Space

  3. Location of Voyager spacecraft. #space #cosmoknowledge #voyager #nasa #spacecraft

  4. Saturn and moons

  5. Voyager 1 Just Sent A DISTURBING Message From An Unknown Star

COMMENTS

  1. 40 Years Ago: Voyager 2 Explores Jupiter

    Forty years ago, the Voyager 2 spacecraft made its closest approach to Jupiter. Managed by the Jet Propulsion Laboratory in Pasadena, California, the Voyagers were a pair of spacecraft launched in 1977 to explore the outer planets. Initially targeted only to visit Jupiter and Saturn, Voyager 2 went on to investigate Uranus and Neptune as well ...

  2. Voyager 2 Transformed Our Ideas of Jupiter's Moons 40 Years Ago

    It was 40 years ago today that a NASA spacecraft revealed strong evidence that an icy moon of Jupiter may be able to host life. Voyager 2 flew by the Jupiter system on July 9, 1979, and discovered ...

  3. Jupiter missions

    The spacecraft captured more than 18,000 images of the gas giant and its moons. Voyager 1's first pictures of Jupiter beamed back to Earth in April 1978, when the probe was 165 million miles (266 ...

  4. Voyager

    The primary mission was the exploration of Jupiter and Saturn. After making a string of discoveries there — such as active volcanoes on Jupiter's moon Io and intricacies of Saturn's rings — the mission was extended. Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets.

  5. 45 Years Ago: Voyager 2 Begins Its Epic Journey to the Outer Planets

    Voyager 2 conducted its observations of Jupiter between April 24 and Aug. 5, 1979, making its closest approach of 350,000 miles above the planet's cloud tops on July 9. The spacecraft returned 17,000 images of Jupiter, many of its satellites, and confirmed Voyager 1's discovery of a thin ring encircling the planet.

  6. Voyager

    Voyager 1's closest approach to Jupiter occurred March 5, 1979. Voyager 2's closest approach was July 9, 1979. Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many ...

  7. 40 Years Ago: Voyager 1 Explores Jupiter

    Left: Schematic of the Voyager spacecraft, illustrating the science experiments.Right: Trajectory of Voyager 1 through the Jovian system. Two weeks after its launch from Florida on Sep. 5, 1977, Voyager 1 turned its cameras back toward its home planet and took the first single-frame image of the Earth-Moon system, providing a taste of future discoveries at the outer planets.

  8. Exploration of Jupiter

    The Voyager 1 and Voyager 2 probes visited the planet in 1979, and studied its moons and the ring system, ... The subsequent and far more technologically advanced Voyager spacecraft had to be redesigned to cope with the radiation ... The Europa Jupiter System Mission (EJSM) was a joint NASA/ESA proposal for exploration of Jupiter and its moons.

  9. Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

    Beyond Expectations. Voyager 2 launched on Aug. 20, 1977, quickly followed by Voyager 1 on Sept. 5. Both probes traveled to Jupiter and Saturn, with Voyager 1 moving faster and reaching them first. Together, the probes unveiled much about the solar system's two largest planets and their moons.

  10. 45 years ago, NASA's Voyager spacecraft flew past Jupiter. See how the

    Voyager 2 entered Jupiter's orbit as Voyager 1 was on its way out and took an additional 14,000 photos before completing its Jupiter encounter in August 1979. That was 45 years ago. Today we have a wealth of stunningly detailed, colorful snapshots of Jupiter and its moons , thanks to NASA's more modern Juno spacecraft, which has been orbiting ...

  11. Voyager left NASA 'happily bewildered' by what it saw at Jupiter

    On March 5, the spacecraft made its closest approach, passing within 128,400 miles (206,700km) of Jupiter's cloud tops, barely one-third the distance at which Voyager 2 would pass July 9.

  12. Voyager

    The twin spacecraft Voyager 1 and Voyager 2 were launched by NASA in separate months in the summer of 1977 from Cape Canaveral, Florida. ... More than 10,000 trajectories were studied before choosing the two that would allow close flybys of Jupiter and its large moon Io, and Saturn and its large moon Titan; the chosen flight path for Voyager 2 ...

  13. 45 years ago, NASA's Voyager spacecraft flew past Jupiter. See how the

    Voyager was a major upgrade. The first probe photographed Jupiter for 4 months, capturing 19,000 pictures. Voyager 2 entered Jupiter's orbit as Voyager 1 was on its way out and took an additional ...

  14. Voyager 2

    Voyager 2 is the only spacecraft to study all four of the solar system's giant planets at close range. Voyager 2 discovered a 14th moon at Jupiter. Voyager 2 was the first human-made object to fly past Uranus. At Uranus, Voyager 2 discovered 10 new moons and two new rings. Voyager 2 was the first human-made object to fly by Neptune.

  15. Slice of History

    On 5 March 1979, Voyager 1 passed Jupiter for the first time in a landmark moment in global space history. Designed to take advantage of a rare planetary alignment that occurs only once in 176 years, Voyagers 1 and 2 remain both the most distant human-made objects in existence and the most well-traveled spacecraft in history.

  16. Voyager at Jupiter

    Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and its encounter continued into August.

  17. Voyager 1

    Voyager 1 was the first spacecraft to cross the heliosphere, the boundary where the influences outside our solar system are stronger than those from our Sun. Voyager 1 is the first human-made object to venture into interstellar space. Voyager 1 discovered a thin ring around Jupiter and two new Jovian moons: Thebe and Metis.

  18. Voyager turns 45: What the iconic mission taught us and what's next

    In April, the National Academies Planetary Science Decadal Survey recommended that NASA send a $4.2 billion Uranus Orbiter and Probe mission to unveil the mysterious ice giant planet and its moons ...

  19. Voyager

    Launched in 1977, the Voyagers delivered many surprises and discoveries from their encounters with the gas giants of the outer solar system: Jupiter, Saturn, Uranus and Neptune. Between 1977 and 1990, the mission attained these distinctions: First spacecraft to fly by all four planets of the outer solar system (Voyager 2)

  20. NASA Science Live: Juno Spacecraft Makes Historic Flyby of Jupiter's Moons

    NASA's Juno spacecraft has been in orbit around Jupiter for almost 8 years, offering it the unique opportunity to make close flybys of two of the planet's intriguing moons - Io and Europa. Join NASA experts Thursday, March 7 at 1 p.m. ET as we delve into these enigmatic worlds to learn how scientists are unraveling their secrets.

  21. What Voyager 1 Learned at Jupiter Forty Years Ago

    published 5 March 2019. It was 40 years ago today (March 5) that Voyager 1 flew past Jupiter, revealing a surprising planetary system that includes moons of ice and fire. And scientists are still ...

  22. Voyagers in Space Flashcards

    It's Great Red spot is a constant storm, a faint ring around Jupiter, ice sheets on one of the moons, and volcanoes on another moon. What did the Voyager mission discover about Saturn? Close-up pictures showed new rings that could not be seen from Earth around the solar system's second-largest planet

  23. Voyager

    Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and its encounter continued into August. They took more than 33,000 pictures of Jupiter and its five major satellites. For a summary of the more important science ...

  24. Media Get Close-Up of NASA's Jupiter-Bound Europa Clipper

    Planning of the mission began in 2013, and Europa Clipper was officially confirmed by NASA as a mission in 2019. The trip to Jupiter is expected to take about six years, with flybys of Mars and Earth. Reaching the gas giant in 2030, the spacecraft will orbit Jupiter while flying by Europa dozens of times, dipping as close as 16 miles (25 kilometers) from the moon's surface to gather data ...

  25. NASA spacecraft snaps view of volcanoes erupting on distant world Io

    The space agency's Juno probe, which has orbited Jupiter since 2016, swooped by the gas giant's volcanic moon Io last week, its last close planned flyby. The craft captured a world teeming with ...

  26. China's experimental moon satellites beam back lunar imagery (video

    Jupiter's violent moon Io has been the solar system's most volcanic body for around 4.5 billion years Alt-space history series 'For All Mankind' gets 5th season, new 'Star City' spinoff