Warp drives: Physicists give chances of faster-than -light space travel a boost
Associate Professor of Physics, Oklahoma State University
Disclosure statement
Mario Borunda does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.
Oklahoma State University provides funding as a member of The Conversation US.
View all partners
The closest star to Earth is Proxima Centauri. It is about 4.25 light-years away, or about 25 trillion miles (40 trillion km). The fastest ever spacecraft, the now- in-space Parker Solar Probe will reach a top speed of 450,000 mph. It would take just 20 seconds to go from Los Angeles to New York City at that speed, but it would take the solar probe about 6,633 years to reach Earth’s nearest neighboring solar system.
If humanity ever wants to travel easily between stars, people will need to go faster than light. But so far, faster-than-light travel is possible only in science fiction.
In Issac Asimov’s Foundation series , humanity can travel from planet to planet, star to star or across the universe using jump drives. As a kid, I read as many of those stories as I could get my hands on. I am now a theoretical physicist and study nanotechnology, but I am still fascinated by the ways humanity could one day travel in space.
Some characters – like the astronauts in the movies “Interstellar” and “Thor” – use wormholes to travel between solar systems in seconds. Another approach – familiar to “Star Trek” fans – is warp drive technology. Warp drives are theoretically possible if still far-fetched technology. Two recent papers made headlines in March when researchers claimed to have overcome one of the many challenges that stand between the theory of warp drives and reality.
But how do these theoretical warp drives really work? And will humans be making the jump to warp speed anytime soon?
Compression and expansion
Physicists’ current understanding of spacetime comes from Albert Einstein’s theory of General Relativity . General Relativity states that space and time are fused and that nothing can travel faster than the speed of light. General relativity also describes how mass and energy warp spacetime – hefty objects like stars and black holes curve spacetime around them. This curvature is what you feel as gravity and why many spacefaring heroes worry about “getting stuck in” or “falling into” a gravity well. Early science fiction writers John Campbell and Asimov saw this warping as a way to skirt the speed limit.
What if a starship could compress space in front of it while expanding spacetime behind it? “Star Trek” took this idea and named it the warp drive.
In 1994, Miguel Alcubierre, a Mexican theoretical physicist, showed that compressing spacetime in front of the spaceship while expanding it behind was mathematically possible within the laws of General Relativity . So, what does that mean? Imagine the distance between two points is 10 meters (33 feet). If you are standing at point A and can travel one meter per second, it would take 10 seconds to get to point B. However, let’s say you could somehow compress the space between you and point B so that the interval is now just one meter. Then, moving through spacetime at your maximum speed of one meter per second, you would be able to reach point B in about one second. In theory, this approach does not contradict the laws of relativity since you are not moving faster than light in the space around you. Alcubierre showed that the warp drive from “Star Trek” was in fact theoretically possible.
Proxima Centauri here we come, right? Unfortunately, Alcubierre’s method of compressing spacetime had one problem: it requires negative energy or negative mass.
A negative energy problem
Alcubierre’s warp drive would work by creating a bubble of flat spacetime around the spaceship and curving spacetime around that bubble to reduce distances. The warp drive would require either negative mass – a theorized type of matter – or a ring of negative energy density to work. Physicists have never observed negative mass, so that leaves negative energy as the only option.
To create negative energy, a warp drive would use a huge amount of mass to create an imbalance between particles and antiparticles. For example, if an electron and an antielectron appear near the warp drive, one of the particles would get trapped by the mass and this results in an imbalance. This imbalance results in negative energy density. Alcubierre’s warp drive would use this negative energy to create the spacetime bubble.
But for a warp drive to generate enough negative energy, you would need a lot of matter. Alcubierre estimated that a warp drive with a 100-meter bubble would require the mass of the entire visible universe .
In 1999, physicist Chris Van Den Broeck showed that expanding the volume inside the bubble but keeping the surface area constant would reduce the energy requirements significantly , to just about the mass of the sun. A significant improvement, but still far beyond all practical possibilities.
A sci-fi future?
Two recent papers – one by Alexey Bobrick and Gianni Martire and another by Erik Lentz – provide solutions that seem to bring warp drives closer to reality.
Bobrick and Martire realized that by modifying spacetime within the bubble in a certain way, they could remove the need to use negative energy. This solution, though, does not produce a warp drive that can go faster than light.
[ Over 100,000 readers rely on The Conversation’s newsletter to understand the world. Sign up today .]
Independently, Lentz also proposed a solution that does not require negative energy. He used a different geometric approach to solve the equations of General Relativity, and by doing so, he found that a warp drive wouldn’t need to use negative energy. Lentz’s solution would allow the bubble to travel faster than the speed of light.
It is essential to point out that these exciting developments are mathematical models. As a physicist, I won’t fully trust models until we have experimental proof. Yet, the science of warp drives is coming into view. As a science fiction fan, I welcome all this innovative thinking. In the words of Captain Picard , things are only impossible until they are not.
- General Relativity
- Theoretical physics
- Interstellar
- Speed of light
- Albert Einstein
Professor of Indigenous Cultural and Creative Industries (Identified)
Communications Director
Associate Director, Post-Award, RGCF
University Relations Manager
2024 Vice-Chancellor's Research Fellowships
Suggested Searches
- Climate Change
- Expedition 64
- Mars perseverance
- SpaceX Crew-2
- International Space Station
- View All Topics A-Z
Humans in Space
Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.
NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
NASA’s Webb Peers into the Extreme Outer Galaxy
What’s Up: September 2024 Skywatching Tips from NASA
- Search All NASA Missions
- A to Z List of Missions
- Upcoming Launches and Landings
- Spaceships and Rockets
- Communicating with Missions
- James Webb Space Telescope
- Hubble Space Telescope
- Why Go to Space
- Commercial Space
- Destinations
- Living in Space
- Explore Earth Science
- Earth, Our Planet
- Earth Science in Action
- Earth Multimedia
- Earth Science Researchers
- Pluto & Dwarf Planets
- Asteroids, Comets & Meteors
- The Kuiper Belt
- The Oort Cloud
- Skywatching
- The Search for Life in the Universe
- Black Holes
- The Big Bang
- Dark Energy & Dark Matter
- Earth Science
- Planetary Science
- Astrophysics & Space Science
- The Sun & Heliophysics
- Biological & Physical Sciences
- Lunar Science
- Citizen Science
- Astromaterials
- Aeronautics Research
- Human Space Travel Research
- Science in the Air
- NASA Aircraft
- Flight Innovation
- Supersonic Flight
- Air Traffic Solutions
- Green Aviation Tech
- Drones & You
- Technology Transfer & Spinoffs
- Space Travel Technology
- Technology Living in Space
- Manufacturing and Materials
- Science Instruments
- For Kids and Students
- For Educators
- For Colleges and Universities
- For Professionals
- Science for Everyone
- Requests for Exhibits, Artifacts, or Speakers
- STEM Engagement at NASA
- NASA's Impacts
- Centers and Facilities
- Directorates
- Organizations
- People of NASA
- Internships
- Our History
- Doing Business with NASA
- Get Involved
NASA en Español
- Aeronáutica
- Ciencias Terrestres
- Sistema Solar
- All NASA News
- Video Series on NASA+
- Newsletters
- Social Media
- Media Resources
- Upcoming Launches & Landings
- Virtual Guest Program
- Image of the Day
- Sounds and Ringtones
- Interactives
- STEM Multimedia
Hubble Examines a Spiral Star Factory
NASA’s SpaceX Crew-9 to Conduct Space Station Research
Station Science Top News: September 13, 2024
Going Back-to-School with NASA Data
Amendment 48: A.5 Carbon Cycle Science Final Text and Due Dates.
NASA Finds Summer 2024 Hottest to Date
8 Things to Know About NASA’s Mission to an Ocean Moon of Jupiter
Solar Storms and Flares
NASA Completes Spacecraft to Transport, Support Roman Space Telescope
NASA’s Hubble Finds More Black Holes than Expected in the Early Universe
ICESat-2 Hosts Third Applications Workshop
Amendment 49: A.55 Decadal Survey Incubation Program: Science and Technology Final Text and Due Dates
Celebrating the First Earth Day Event at NASA Headquarters
65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane
NASA, GE Aerospace Advancing Hybrid-Electric Airliners with HyTEC
NASA Tunnel Generates Decades of Icy Aircraft Safety Data
Measuring Moon Dust to Fight Air Pollution
NASA Mobilizes Resource for HBCU Scholars, Highlighted at Conference
NASA Moon to Mars Architecture Art Challenge
Printed Engines Propel the Next Industrial Revolution
15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
La NASA invita a los medios al lanzamiento de Europa Clipper
El X-59 de la NASA avanza en las pruebas de preparación para volar
La NASA invita a creadores de las redes sociales al lanzamiento de la misión Europa Clipper
Three ways to travel at (nearly) the speed of light.
Katy Mersmann
1) electromagnetic fields, 2) magnetic explosions, 3) wave-particle interactions.
One hundred years ago today, on May 29, 1919, measurements of a solar eclipse offered verification for Einstein’s theory of general relativity. Even before that, Einstein had developed the theory of special relativity, which revolutionized the way we understand light. To this day, it provides guidance on understanding how particles move through space — a key area of research to keep spacecraft and astronauts safe from radiation.
The theory of special relativity showed that particles of light, photons, travel through a vacuum at a constant pace of 670,616,629 miles per hour — a speed that’s immensely difficult to achieve and impossible to surpass in that environment. Yet all across space, from black holes to our near-Earth environment, particles are, in fact, being accelerated to incredible speeds, some even reaching 99.9% the speed of light.
One of NASA’s jobs is to better understand how these particles are accelerated. Studying these superfast, or relativistic, particles can ultimately help protect missions exploring the solar system, traveling to the Moon, and they can teach us more about our galactic neighborhood: A well-aimed near-light-speed particle can trip onboard electronics and too many at once could have negative radiation effects on space-faring astronauts as they travel to the Moon — or beyond.
Here are three ways that acceleration happens.
Most of the processes that accelerate particles to relativistic speeds work with electromagnetic fields — the same force that keeps magnets on your fridge. The two components, electric and magnetic fields, like two sides of the same coin, work together to whisk particles at relativistic speeds throughout the universe.
In essence, electromagnetic fields accelerate charged particles because the particles feel a force in an electromagnetic field that pushes them along, similar to how gravity pulls at objects with mass. In the right conditions, electromagnetic fields can accelerate particles at near-light-speed.
On Earth, electric fields are often specifically harnessed on smaller scales to speed up particles in laboratories. Particle accelerators, like the Large Hadron Collider and Fermilab, use pulsed electromagnetic fields to accelerate charged particles up to 99.99999896% the speed of light. At these speeds, the particles can be smashed together to produce collisions with immense amounts of energy. This allows scientists to look for elementary particles and understand what the universe was like in the very first fractions of a second after the Big Bang.
Download related video from NASA Goddard’s Scientific Visualization Studio
Magnetic fields are everywhere in space, encircling Earth and spanning the solar system. They even guide charged particles moving through space, which spiral around the fields.
When these magnetic fields run into each other, they can become tangled. When the tension between the crossed lines becomes too great, the lines explosively snap and realign in a process known as magnetic reconnection. The rapid change in a region’s magnetic field creates electric fields, which causes all the attendant charged particles to be flung away at high speeds. Scientists suspect magnetic reconnection is one way that particles — for example, the solar wind, which is the constant stream of charged particles from the Sun — is accelerated to relativistic speeds.
Those speedy particles also create a variety of side-effects near planets. Magnetic reconnection occurs close to us at points where the Sun’s magnetic field pushes against Earth’s magnetosphere — its protective magnetic environment. When magnetic reconnection occurs on the side of Earth facing away from the Sun, the particles can be hurled into Earth’s upper atmosphere where they spark the auroras. Magnetic reconnection is also thought to be responsible around other planets like Jupiter and Saturn, though in slightly different ways.
NASA’s Magnetospheric Multiscale spacecraft were designed and built to focus on understanding all aspects of magnetic reconnection. Using four identical spacecraft, the mission flies around Earth to catch magnetic reconnection in action. The results of the analyzed data can help scientists understand particle acceleration at relativistic speeds around Earth and across the universe.
Particles can be accelerated by interactions with electromagnetic waves, called wave-particle interactions. When electromagnetic waves collide, their fields can become compressed. Charged particles bouncing back and forth between the waves can gain energy similar to a ball bouncing between two merging walls.
These types of interactions are constantly occurring in near-Earth space and are responsible for accelerating particles to speeds that can damage electronics on spacecraft and satellites in space. NASA missions, like the Van Allen Probes , help scientists understand wave-particle interactions.
Wave-particle interactions are also thought to be responsible for accelerating some cosmic rays that originate outside our solar system. After a supernova explosion, a hot, dense shell of compressed gas called a blast wave is ejected away from the stellar core. Filled with magnetic fields and charged particles, wave-particle interactions in these bubbles can launch high-energy cosmic rays at 99.6% the speed of light. Wave-particle interactions may also be partially responsible for accelerating the solar wind and cosmic rays from the Sun.
Download this and related videos in HD formats from NASA Goddard’s Scientific Visualization Studio
By Mara Johnson-Groh NASA’s Goddard Space Flight Center , Greenbelt, Md.
- svg]:fill-accent-900">
To set the record straight: Nothing can break the speed of light
By Rahul Rao
Posted on Oct 24, 2022 8:35 AM EDT
Back in 2018, astronomers examining the ruins of two collided neutron stars in Hubble Space Telescope images noticed something peculiar: a stream of bright high-energy ions, jetting away from the merger in Earth’s direction at seven times the speed of light.
That didn’t seem right, so the team recalculated with observations from a different radio telescope. In those observations, the stream was flying past at only four times the speed of light.
That still didn’t seem right. Nothing in the universe can go faster than the speed of light. As it happens, it was an illusion, a study published in the journal Nature explained earlier this month.
[Related: Have we been measuring gravity wrong this whole time? ]
The phenomenon that makes particles in space appear to travel faster than light is called superluminal motion . The phrase fits the illusion: It means “more than light,” but actually describes a trick where an object moving toward you appears much faster than its actual speed. There are high-energy streams out in space there that can pretend to move faster than light—today, astronomers are seeing a growing number of them.
“They look like they’re moving across the sky, crazy fast, but it’s just that they’re moving toward you and across the sky at the same time,” says Jay Anderson, an astronomer at the Space Telescope Science Institute in Maryland who has worked extensively with Hubble and helped author the Nature paper.
To get their jet’s true speed, Anderson and his collaborates compared Hubble and radio telescope observations. Ultimately, they estimated that the jet was zooming directly at Earth at around 99.95 percent the speed of light. That’s very close to the speed of light, but not quite faster than it.
Indeed, to our knowledge so far, nothing on or off our planet can travel faster than the speed of light. This has been proven time and time again through the laws of special relativity , put on paper by Albert Einstein a century ago. Light, which moves at about 670 million miles per hour, is the ultimate cosmic speed limit. Not only that, special relativity holds that the speed of light is a constant no matter who or what is observing it.
But special relativity doesn’t limit things from traveling super close to the speed of light (cosmic rays and the particles from solar flares are some examples). That’s where superluminal motion kicks in. As something moves toward you, the distance that its light and image needs to reach you decreases. In everyday life, that’s not really a factor: Even seemingly speedy things, like a plane moving through the sky above you, don’t move anywhere near the speed of light.
[Related: Check out the latest version of Boom’s supersonic plane ]
But when something is moving at high speeds at hundreds of millions of miles per hour in the proper direction, the distance between the object and the perceiver (whether it be a person or a camera lens) drops very quickly. This gives the illusion that something is approaching more rapidly than it actually is. Neither our eyes nor our telescopes can tell the difference, which means astronomers have to calculate an object’s actual speed from data collected in images.
The researchers behind the new Nature paper weren’t the first to grapple with superluminal motion. In fact, they’re more than a century late. In 1901, astronomers scanning the night sky caught a glimpse of a nova in the direction of the constellation Perseus. It was the remnants of a white dwarf that ate the outer shells of a nearby gas giant, briefly lighting up bright enough to see with the naked eye. Astronomers caught a bubble inflating from the nova at breakneck speed. But because there was no theory of general relativity at the time, the event quickly faded from memory.
The phenomenon gained buzz again by the 1970s and 1980s. By then, astronomers were finding all sorts of odd high-energy objects in distant corners of the universe: quasars and active galaxies, all of which could shoot out jets of material. Most of the time, these objects were powered by black holes that spewed out high-energy jets almost moving at the speed of the light. Depending on the mass and strength of the black hole they come from, they could stretch for thousands, hundreds of thousands, or even millions of light-years to reach Earth.
As distant objects close in, neither our eyes nor our telescopes can tell the difference, giving us the illusion that they’re moving faster and faster.
Around the same time, scientists studying radio waves began seeing enough faux-speeders to raise alarms. They even found a jet from one distant galaxy that appeared to be racing at nearly 10 times the speed of light . The observations garnered a fair amount of alarm among astronomers, though by then the mechanisms were well-understood.
In the decades since, observations of superluminal motion have added up. Astronomers are seeing an ever-increasing number of jets through telescopes, particularly ones that are floating through space like Hubble or the James Webb Space Telescope. When light doesn’t have to pass through Earth’s atmosphere, their captures can be much higher in resolution. This helps teams find more jets that are farther away (such as from ancient, distant galaxies), and it helps them view closer jets in more detail. “Things stand out much better in Hubble images than they do in ground-based images,” says Anderson.
[Related: This image wiggles when you scroll—or does it? ]
Take, for instance, the distant galaxy M87 , whose gargantuan central black hole launched a jet that apparently clocked in at between 4 and 6 times the speed of light. By the 1990s, Hubble could actually peer into the stream of energy and reveal that parts it were traveling at different speeds. “You could actually see features in the jet moving, and you could measure the locations of those features,” Anderson explains.
There are good reasons for astronomers to be interested in such breakneck jets, especially now. In the case of the smashing neutron stars from the Nature study, the crash caused a gamma-ray burst , a type of high-energy explosion that remains poorly understood. The event also stirred up a storm of gravitational waves, causing rippled in space-time that researchers can now pick up and observe. But until they uncover some strange new physics in the matter flying through space, the speed of light remains the hard limit.
September 22, 2011
Particles Found to Travel Faster Than Speed of Light
Neutrino results challenge a cornerstone of Albert Einstein's special theory of relativity, which itself forms the foundation of modern physics
By Geoff Brumfiel & Nature magazine
An Italian experiment has unveiled evidence that fundamental particles known as neutrinos can travel faster than light. Other researchers are cautious about the result, but if it stands further scrutiny, the finding would overturn the most fundamental rule of modern physics—that nothing travels faster than 299,792,458 meters per second.
The experiment is called OPERA (Oscillation Project with Emulsion-tRacking Apparatus), and lies 1,400 meters underground in the Gran Sasso National Laboratory in Italy. It is designed to study a beam of neutrinos coming from CERN, Europe's premier high-energy physics laboratory located 730 kilometers away near Geneva, Switzerland. Neutrinos are fundamental particles that are electrically neutral, rarely interact with other matter, and have a vanishingly small mass. But they are all around us—the sun produces so many neutrinos as a by-product of nuclear reactions that many billions pass through your eye every second. [ Click here to read more about CERN's Large Hadron Collider ]
The 1,800-tonne OPERA detector is a complex array of electronics and photographic emulsion plates, but the new result is simple—the neutrinos are arriving 60 nanoseconds faster than the speed of light allows. "We are shocked," says Antonio Ereditato, a physicist at the University of Bern in Switzerland and OPERA's spokesman.
On supporting science journalism
If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.
Breaking the law
The idea that nothing can travel faster than light in a vacuum is the cornerstone of Albert Einstein's special theory of relativity, which itself forms the foundation of modern physics. If neutrinos are traveling faster than light speed , then one of the most fundamental assumptions of science—that the rules of physics are the same for all observers—would be invalidated. "If it's true, then it's truly extraordinary," says John Ellis, a theoretical physicist at CERN.
Ereditato says that he is confident enough in the new result to make it public. The researchers claim to have measured the 730-kilometer trip between CERN and its detector to within 20 centimeters. They can measure the time of the trip to within 10 nanoseconds, and they have seen the effect in more than 16,000 events measured over the past two years. Given all this, they believe the result has a significance of six-sigma—the physicists' way of saying it is certainly correct. The group will present their results September 23 at CERN, and a preprint of their results will be posted on the physics website ArXiv.org .
At least one other experiment has seen a similar effect before, albeit with a much lower confidence level. In 2007, the Main Injector Neutrino Oscillation Search (MINOS) experiment in Minnesota saw neutrinos from the particle-physics facility Fermilab in Illinois arriving slightly ahead of schedule. At the time, the MINOS team downplayed the result, in part because there was too much uncertainty in the detector's exact position to be sure of its significance, says Jenny Thomas, a spokeswoman for the experiment. Thomas says that MINOS was already planning more accurate follow-up experiments before the latest OPERA result. "I'm hoping that we could get that going and make a measurement in a year or two," she says.
Reasonable doubt
If MINOS were to confirm OPERA's find, the consequences would be enormous. "If you give up the speed of light, then the construction of special relativity falls down," says Antonino Zichichi, a theoretical physicist and emeritus professor at the University of Bologna, Italy. Zichichi speculates that the "superluminal" neutrinos detected by OPERA could be slipping through extra dimensions in space, as predicted by theories such as string theory.
Ellis, however, remains skeptical. Many experiments have looked for particles traveling faster than light speed in the past and have come up empty-handed, he says. Most troubling for OPERA is a separate analysis of a pulse of neutrinos from a nearby supernova known as 1987a. If the speeds seen by OPERA were achievable by all neutrinos, then the pulse from the supernova would have shown up years earlier than the exploding star's flash of light; instead, they arrived within hours of each other. "It's difficult to reconcile with what OPERA is seeing," Ellis says.
Ereditato says that he welcomes skepticism from outsiders, but adds that the researchers have been unable to find any other explanation for their remarkable result. "Whenever you are in these conditions, then you have to go to the community," he says.
This article is reproduced with permission from the magazine Nature . The article was first published on September 22, 2011.
- Login/Register
- Solar System
- Exotic Objects
- Upcoming Events
- Deep-Sky Objects
- Observing Basics
- Telescopes and Equipment
- Astrophotography
- Space Exploration
- Human Spaceflight
- Robotic Spaceflight
- The Magazine
Warp drives: Physicists investigate faster-than-light space travel
The closest star to Earth is Proxima Centauri. It is about 4.25 light-years away, or about 25 trillion miles (40 trillion kilometers). The fastest ever spacecraft, the now- in-space Parker Solar Probe will reach a top speed of 450,000 mph. It would take just 20 seconds to go from Los Angeles to New York City at that speed, but it would take the solar probe about 6,633 years to reach Earth’s nearest neighboring solar system.
If humanity ever wants to travel easily between stars, people will need to go faster than light. But so far, faster-than-light travel is possible only in science fiction.
In Issac Asimov’s Foundation series , humanity can travel from planet to planet, star to star or across the universe using jump drives. As a kid, I read as many of those stories as I could get my hands on. I am now a theoretical physicist and study nanotechnology, but I am still fascinated by the ways humanity could one day travel in space.
Some characters – like the astronauts in the movies “Interstellar” and “Thor” – use wormholes to travel between solar systems in seconds. Another approach – familiar to “Star Trek” fans – is warp drive technology. Warp drives are theoretically possible if still far-fetched technology. Two recent papers made headlines in March when researchers claimed to have overcome one of the many challenges that stand between the theory of warp drives and reality.
But how do these theoretical warp drives really work? And will humans be making the jump to warp speed anytime soon?
Compression and expansion
Physicists’ current understanding of spacetime comes from Albert Einstein’s theory of general relativity . General relativity states that space and time are fused and that nothing can travel faster than the speed of light. General relativity also describes how mass and energy warp spacetime – hefty objects like stars and black holes curve spacetime around them. This curvature is what you feel as gravity and why many spacefaring heroes worry about “getting stuck in” or “falling into” a gravity well. Early science fiction writers John Campbell and Asimov saw this warping as a way to skirt the speed limit.
What if a starship could compress space in front of it while expanding spacetime behind it? “Star Trek” took this idea and named it the warp drive.
In 1994, Miguel Alcubierre, a Mexican theoretical physicist, showed that compressing spacetime in front of the spaceship while expanding it behind was mathematically possible within the laws of General Relativity . So, what does that mean? Imagine the distance between two points is 33 feet (10 meters). If you are standing at point A and can travel one meter per second, it would take 10 seconds to get to point B. However, let’s say you could somehow compress the space between you and point B so that the interval is now just one meter. Then, moving through spacetime at your maximum speed of one meter per second, you would be able to reach point B in about one second. In theory, this approach does not contradict the laws of relativity since you are not moving faster than light in the space around you. Alcubierre showed that the warp drive from “Star Trek” was in fact theoretically possible.
Proxima Centauri here we come, right? Unfortunately, Alcubierre’s method of compressing spacetime had one problem: it requires negative energy or negative mass.
A negative energy problem
Alcubierre’s warp drive would work by creating a bubble of flat spacetime around the spaceship and curving spacetime around that bubble to reduce distances. The warp drive would require either negative mass – a theorized type of matter – or a ring of negative energy density to work. Physicists have never observed negative mass, so that leaves negative energy as the only option.
To create negative energy, a warp drive would use a huge amount of mass to create an imbalance between particles and antiparticles. For example, if an electron and an antielectron appear near the warp drive, one of the particles would get trapped by the mass and this results in an imbalance. This imbalance results in negative energy density. Alcubierre’s warp drive would use this negative energy to create the spacetime bubble.
But for a warp drive to generate enough negative energy, you would need a lot of matter. Alcubierre estimated that a warp drive with a 100-meter bubble would require the mass of the entire visible universe .
In 1999, physicist Chris Van Den Broeck showed that expanding the volume inside the bubble but keeping the surface area constant would reduce the energy requirements significantly , to just about the mass of the Sun. A significant improvement, but still far beyond all practical possibilities.
A sci-fi future?
Two recent papers – one by Alexey Bobrick and Gianni Martire and another by Erik Lentz – provide solutions that seem to bring warp drives closer to reality.
Bobrick and Martire realized that by modifying spacetime within the bubble in a certain way, they could remove the need to use negative energy. This solution, though, does not produce a warp drive that can go faster than light.
Independently, Lentz also proposed a solution that does not require negative energy. He used a different geometric approach to solve the equations of general relativity, and by doing so, he found that a warp drive wouldn’t need to use negative energy. Lentz’s solution would allow the bubble to travel faster than the speed of light.
It is essential to point out that these exciting developments are mathematical models. As a physicist, I won’t fully trust models until we have experimental proof. Yet, the science of warp drives is coming into view. As a science fiction fan, I welcome all this innovative thinking. In the words of Captain Picard , things are only impossible until they are not.
SpaceX Polaris Dawn crew completes historic private spacewalk
Don Pettit, NASA’s oldest active astronaut, begins mission aboard ISS
Opinion: A former astronaut details what Starliner’s uncrewed return means for NASA, Boeing, and the astronauts still up in space
SpaceX takes aim at FAA after latest Starship launch delay
Small, untrackable pieces of space junk are cluttering low Earth orbit
Shortsighted, aging NASA faces uncertain future, says report to Congress
Upcoming Polaris Dawn spacewalk will push the envelope
Why the SpaceX Starship launch pad matters
Polaris Dawn launched Tuesday morning: How to watch the mission’s spacewalk
Hidden in Einstein's Math: Faster-than-Light Travel?
Although Einstein's theories suggest nothing can move faster than the speed of light, two scientists have extended his equations to show what would happen if faster-than-light travel were possible.
Despite an apparent prohibition on such travel by Einstein’s theory of special relativity , the scientists said the theory actually lends itself easily to a description of velocities that exceed the speed of light.
"We started thinking about it, and we think this is a very natural extension of Einstein's equations," said applied mathematician James Hill, who co-authored the new paper with his University of Adelaide, Australia, colleague Barry Cox. The paper was published Oct. 3 in the journal Proceedings of the Royal Society A: Mathematical and Physical Sciences.
Special relativity, proposed by Albert Einstein in 1905, showed how concepts like speed are all relative: A moving observer will measure the speed of an object to be different than a stationary observer will. Furthermore, relativity revealed the concept of time dilation , which says that the faster you go, the more time seems to slow down. Thus, the crew of a speeding spaceship might perceive their trip to another planet to take two weeks, while people left behind on Earth would observe their passage taking 20 years.
Yet special relativity breaks down if two people's relative velocity, the difference between their respective speeds, approaches the speed of light. Now, Hill and Cox have extended the theory to accommodate an infinite relative velocity. [ Top 10 Implications of Faster-Than-Light Neutrinos ]
Interestingly, neither the original Einstein equations, nor the new, extended theory can describe massive objects moving at the speed of light itself. Here, both sets of equations break down into mathematical singularities, where physical properties can't be defined.
"The actual business of going through the speed of light is not defined," Hill told LiveScience. "The theory we've come up with is simply for velocities greater than the speed of light."
Sign up for the Live Science daily newsletter now
Get the world’s most fascinating discoveries delivered straight to your inbox.
In effect, the singularity divides the universe into two: a world where everything moves slower than the speed of light, and a world where everything moves faster. The laws of physics in these two realms could turn out to be quite different.
In some ways, the hidden world beyond the speed of light looks to be a strange one indeed. Hill and Cox's equations suggest, for example, that as a spaceship traveling at super-light speeds accelerated faster and faster, it would lose more and more mass, until at infinite velocity, its mass became zero.
"It's very suggestive that the whole game is different once you go faster than light," Hill said.
Despite the singularity, Hill is not ready to accept that the speed of light is an insurmountable wall. He compared it to crossing the sound barrier. Before Chuck Yeager became the first person to travel faster than the speed of sound in 1947, many experts questioned whether it could be done. Scientists worried that the plane would disintegrate, or the human body wouldn't survive. Neither turned out to be true.
Fears of crossing the light barrier may be similarly unfounded, Hill said.
"I think it's only a matter of time," he said. "Human ingenuity being what it is, it's going to happen, but maybe it will involve a transportation mechanism entirely different from anything presently envisaged."
Follow Clara Moskowitz on Twitter @ClaraMoskowitz or LiveScience @livescience . We're also on Facebook & Google+ .
Physicists unveil 1D gas made of pure light
The universe had a secret life before the Big Bang, new study hints
Fall equinox 2024: When it is, why it happens and what to look for
Most Popular
- 2 A long-lost moon could explain Mars' weird shape and extreme terrain
- 3 Greenhouse gas 80 times more potent than CO2 is rising in the atmosphere — and fast
- 4 China plans to build moon base at the lunar south pole by 2035
- 5 'Space trash' will lead us to intelligent aliens, Harvard astrophysicist Avi Loeb says
- Anime & Manga
- Call of Duty
- Gameumentary
- Review in 3 Minutes
- Design Delve
- Extra Punctuation
- Zero Punctuation
- Area of Effect
- Escape the Law
- In the Frame
- New Narrative
- Out of Focus
- Slightly Something Else
- Escapist Staff
- Privacy Policy
- Terms of Use
- Affiliate Policy
5 Faster-Than-Light Travel Methods and Their Plausibility
Science tells us that it is impossible for an object to travel at light speed, let alone faster than that. But so many of our favorite science-fiction movies, games, and TV shows rely on faster-than-light travel to craft their interplanetary adventures.
Let’s take a look at five means of FTL found in sci-fi that don’t break the rules of relativity and examine how plausible they are based on the science behind them.
1. Hyperdrive
Popularized by Star Wars and used extensively in fiction, a hyperdrive enables a spaceship to travel at FTL speeds by entering another dimension known as “hyperspace.” The spaceship isn’t actually traveling faster than the speed of light, but rather is making use of hyperspace as a shortcut, and the hyperdrive is the mechanism that shunts the spaceship into and out of this parallel dimension.
Specific coordinates within hyperspace have corresponding coordinates in normal space, but the distance between those two points will be shorter in hyperspace, allowing for a faster journey. Before making a “hyperspace jump,” calculations must be made to find the matching coordinates between hyperspace and normal space in order to know when and where to exit hyperspace at the desired normal space destination.
Is it plausible?
Physicist Bukrhard Heim proposed a theory in 1977 that FTL travel may be possible by using magnetic fields to enter higher-dimensional space. The theory uses a mathematical model that calls upon six or more dimensions in an attempt to resolve incompatibilities between quantum mechanics and general relativity, but Heim’s ideas have not been accepted in mainstream science. Still, the fact that a theoretical physicist devoted a large portion of his life in pursuit of a theory that could lead to a means of space travel lends the concept of hyperspace a little more credibility than if it were simply the fancy of a sci-fi writer.
2. Jump Drive
Seen in such works as Battlestar Galactica , a jump drive allows for instantaneous teleportation between two points. Similar to a hyperdrive, coordinates must be calculated to ensure a safe jump; the longer the desired travel distance, the more complex the calculation. In theory, there is no limit to how far a jump can take a ship, but an incorrect calculation may result in a catastrophic collision with a planet or space debris.
The Dune universe’s FTL, based on the fictional “Holtzman effect,” can also be considered a jump drive.
Master of hard sci-fi Isaac Asimov was the first to suggest the idea of a jump drive in the Foundation series, which lends some credibility to the idea. However, most fiction doesn’t clearly explain the principles of physics that allow for this teleportation, making it impossible to claim a jump drive as plausible. However, if it functions by opening a wormhole…
3. Wormholes
A wormhole, as seen in the Stargate franchise, allows for near-instantaneous travel across vast distances. Wormholes may be naturally-occurring or man-made, but are almost always temporary and serve as tunnels through spacetime.
Imagine our universe as a piece of paper, and an ant walking on that piece of paper as a spaceship. If the ant wants to walk from one end of that piece of paper to the other, the fastest way to do so would be to travel in a straight line. But paper, like space, bends. If you bend the paper into a U shape, the ant’s journey goes largely undisturbed – it still has to traverse the same distance along that line. However, in 3D space, the two ends of the paper are very close to each other now. Cut off a piece of a drinking straw and let the ant use it as a bridge or tunnel between the two ends of the paper, and the journey is suddenly much shorter.
While we have never directly observed any evidence for one, wormholes are theoretically possible. Albert Einstein and his colleague Nathan Rosen first discovered wormholes in 1935 as solutions to equations within Einstein’s general theory of relativity – the math says they can exist.
Since then, other scientists, including Stephen Hawking, have argued that it may be possible to traverse a wormhole, under the right circumstances. The debate surrounding wormholes isn’t about their plausibility, but rather how they may be created and sustained.
4. Slipstream
The concept of slipstream can be found in such works as Star Trek , Doctor Who , and the Halo video game franchise, but there is no widely-agreed upon definition of what slipstream is or how it works beyond it being a means of FTL. We’ll consider the slipstream seen in Gene Roddenberry’s Andromeda , where it is “not the best way to travel faster than light, it’s just the only way,” as per the show’s protagonist.
Slipstream is a form of interdimensional highway in which ships ride a series of slipstream “strings” – the unseen connections between all objects in the universe. These strings are in constant flux and form a tangled mess of intersections and divergent paths. Any time a pilot reaches a fork in the road, he has to guess which is the correct path to take to continue along toward his desired destination. Before the pilot makes that decision, both paths are simultaneously the correct and incorrect route, and it is the act of choosing a path that forces one to be correct and the other to be incorrect – if this made you think of Shrödinger’s cat, that does seem to be the basis for this concept. A computer selects the “correct” path 50% of the time, but due to intuition, a human picks the correct path 99.9% of the time.
There are no mainstream scientific theories that support this idea of slipstream. Reading the “lore” of this means of FTL evokes fantastical interpretations of string theory, quantum entanglement, and other concepts in modern physics, but the ideas are supported only through their internal consistency rather than actual fact, much like a well-explained magic system that allows fictional wizards to cast spells.
5. Warp Drive
Popularized by Star Trek , a warp drive distorts space around a ship while leaving the ship itself inside a “bubble” of normal space. The space in front of the ship is contracted, while the space behind it is expanded, and the ship “rides” the distortion wave at FTL speeds. Technically, it is not the ship that is moving, but rather space itself, which is how we avoid breaking any laws of physics.
Imagine a surfer slowly paddling back to shore. When a wave comes, it will lower the water level in front of him and raise the water level behind him, and he can ride the downward slope all the way to shore. Relative to the wave, the surfer isn’t moving – he’s staying between the crest and the trough, and it is instead the wave that is moving.
Surfing doesn’t quite work like that, but it’s a simplification that we can all visualize. In a similar manner to how a wave will distort water to propel a surfer, a warp drive will distort space to propel a ship.
In 1994, the Alcubierre drive was proposed as a theoretical means of FTL travel and is based on a mathematical solution to equations within Einstein’s general theory of relativity. Just like a warp drive, the Alcubierre drive would contract space in front of a spaceship and expand space behind it.
NASA has been actively researching this technology since 2012 , and the lead researcher even worked with a 3D artist to develop a model of what a warp-capable ship might look like . As far as real-life FTL goes, warp is the current front-runner to becoming reality.
As far as real-life FTL travel goes, the fictional favorites can be found in Star Trek and Stargate : the warp drive, and wormholes. Both are theoretically possible; however, both require further scientific breakthroughs before practical testing can begin. In either case, we need to discover “exotic matter” – hypothetical particles with negative mass – to get these mechanisms to work. “Element zero” from the Mass Effect series, the rare material that is essential to FTL travel in that universe, doesn’t quite fit the description, but the lore is at least scientifically sound in suggesting that some new, rare form of matter is required to make this technological leap.
The good news is that scientists don’t believe this is a matter of if, but rather when. There will be a time in the future when a stately, bald man in uniform will sit back in a command chair and relay the order, “Engage.”
Category: For Science! Expansion Packs: Why There Will Never Be Enough CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! This Is Why Your New Year’s Resolution Will Fail CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! 3 Reasons Soccer Ball Droid BB-8 Is an Inferior Design to R2-D2 CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! This Is How Star Wars Can Redeem Midichlorians CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! Star Wars: This Is How You Defend The Ridiculous Crossguard Lightsaber CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! How Video Games Can Reprogram Your Brain to Think, See, and Hear Better CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! The Life and Death of the Philae Lander: A 10-Year Journey CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! 6 Frame Rate Facts You Didn’t Know CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! Can Tomorrowland Save The World? CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! Will These Brain Teasers Stump You? CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Category: For Science! How Big Will Hard Drives Get? Fun with Math CJ Miozzi Legacy Author CJ Miozzi Legacy Author
Advertisement
What If You Traveled Faster Than the Speed of Light?
- Share Content on Facebook
- Share Content on LinkedIn
- Share Content on Flipboard
- Share Content on Reddit
- Share Content via Email
When we were kids, we were amazed that Superman could travel "faster than a speeding bullet." We could even picture him, chasing down a projectile fired from a weapon, his right arm outstretched, his cape rippling behind him. If he traveled at half the bullet 's speed, the rate at which the bullet moved away from him would halve. If he did indeed travel faster than the bullet, he would overtake it and lead the way. Go, Superman!
In other words, Superman's aerial antics obeyed Newton's views of space and time : that the positions and motions of objects in space should all be measurable relative to an absolute, nonmoving frame of reference [source: Rynasiewicz ].
In the early 1900s, scientists held firm to the Newtonian view of the world. Then a German-born mathematician and physicist by the name of Albert Einstein came along and changed everything. In 1905, Einstein published his theory of special relativity , which put forth a startling idea: There is no preferred frame of reference. Everything, even time, is relative.
Two important principles underpinned his theory. The first stated that the same laws of physics apply equally in all constantly moving frames of reference. The second said that the speed of light — about 186,000 miles per second (300,000 kilometers per second) — is constant and independent of the observer's motion or the source of light. According to Einstein, if Superman were to chase a light beam at half the speed of light, the beam would continue to move away from him at exactly the same speed [source: Stein , AMNH.org ].
These concepts seem deceptively simple, but they have some mind-bending implications. One of the biggest is represented by Einstein's famous equation, E = mc², where E is energy, m is mass and c is the speed of light.
According to this equation, mass and energy are the same physical entity and can be changed into each other. Because of this equivalence, the energy an object has due to its motion will increase its mass. In other words, the faster an object moves, the greater its mass. This only becomes noticeable when an object moves really quickly. If it moves at 10 percent the speed of light, for example, its mass will only be 0.5 percent more than normal. But if it moves at 90 percent the speed of light, its mass will double [source: LBL.gov ].
As an object approaches the speed of light, its mass rises precipitously. If an object tries to travel 186,000 miles per second, its mass becomes infinite, and so does the energy required to move it. For this reason, no normal object can travel as fast or faster than the speed of light.
That answers our question, but let's have a little fun and modify the question slightly.
Almost As Fast As the Speed of Light?
We covered the original question, but what if we tweaked it to say, "What if you traveled almost as fast as the speed of light?" In that case, you would experience some interesting effects. One famous result is something physicists call time dilation , which describes how time runs more slowly for objects moving very rapidly. If you flew on a rocket traveling 90 percent of light-speed, the passage of time for you would be halved. Your watch would advance only 10 minutes, while more than 20 minutes would pass for an Earthbound observer [source: May ]
You would also experience some strange visual consequences. One such consequence is called aberration , and it refers to how your entire field of view would shrink down to a tiny, tunnel-shaped "window" out in front of your spacecraft. This happens because photons (those exceedingly tiny packets of light) — even photons behind you — appear to come in from the forward direction.
In addition, you would notice an extreme Doppler effect , which would cause light waves from stars in front of you to crowd together, making the objects appear blue. Light waves from stars behind you would spread apart and appear red. The faster you go, the more extreme this phenomenon becomes until all visible light from stars in front of the spacecraft and stars to the rear become completely shifted out of the known visible spectrum (the colors humans can see). When these stars move out of your perceptible wavelength, they simply appear to fade to black or vanish against the background.
Of course, if you want to travel faster than a speeding photon, you'll need more than the same rocket technology we've been using for decades.
In a March 2021 paper published in the journal Classical and Quantum Gravity , astrophysicist Erik Lentz of the University of Göttingen in Germany proposed the idea of rearranging space-time to create a warp bubble, inside which a spacecraft might be able to travel at faster-than-light speeds.
Speed of Light FAQ
Is there anything faster than the speed of light, how fast is the speed of light in miles, why is "c" the speed of light, what is the speed of light on earth, lots more information, related articles.
- Data Sent via Infrared Light Could Make WiFi Hundreds of Times Faster
- How Light Propulsion Will Work
- How Light Works
- American Museum of Natural History. "A Matter of Time. " Amnh.org. (Feb. 16, 2022) https://www.amnh.org/exhibitions/einstein/time/a-matter-of-time
- Brandeker, Alexis. "What would a relativistic interstellar traveler see?" Usenet Physics FAQ. May 2002. (Feb. 16, 2022J) http://www.desy.de/user/projects/Physics/Relativity/SR/Spaceship/spaceship.html
- Carl Sagan's Cosmos. "Travels in Space and Time." YouTube. Video uploaded Nov. 27, 2006 (Feb. 16, 2022 ) https://www.youtube.com/watch?v=2t8hUaaZVJg
- Hawking, Stephen. "The Illustrated Brief History of Time. " Bantam. 1996. (Feb. 16. 2022) https://bit.ly/367UGpZ
- EurekAlert! "Breaking the warp barrier for faster-than-light travel. " Eurekalert.org. March 9, 2021. (Feb. 16, 2022) https://www.eurekalert.org/news-releases/642756
- Lawrence Berkeley National Laboratory. "Mass, Energy, the Speed of Light – It's Not Intuitive! " Lbl.gov. 1996. (Feb. 16, 2022) https://www2.lbl.gov/MicroWorlds/teachers/massenergy.pdf
- Lemonick, Michael D. "Will We Ever Travel at the Speed of Light?" Time. Apr. 10, 2000. (Feb. 16, 2022), 2011) http://content.time.com/time/subscriber/article/0,33009,996616,00.html
- May, Andrew. "What is time dilation? " LiveScience. Nov. 17, 2021. (Feb. 16, 2022) https://www.livescience.com/what-is-time-dilation
- NOVA Physics + Math. "Carl Sagan Ponders Time Travel." NOVA. Oct. 12, 1999. (Feb. 16, 2022) http://www.pbs.org/wgbh/nova/physics/Sagan-Time-Travel.html
- Ptak, Andy. "The Speed of Light in a Rocket." NASA's Imagine the Universe: Ask An Astrophysicist. Jan. 2, 1997. (Feb. 16, 2022) http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/970102c.html
- Rynasiewicz, Robert, "Newton's Views on Space, Time, and Motion."Stanford Encyclopedia of Philosophy. Summer 2014. (Feb. 16, 2022) https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=newton-stm
- Stein, Vicky. "Einstein's Theory of Special Relativity. " Space.com. Sept. 20, 2021. (Feb. 16, 2022) https://www.space.com/36273-theory-special-relativity.html
- Van Zyl, Miezam (project editor)."Universe: The Definitive Visual Guide." Dorling Kindersley Limited. 2020. (Feb. 16, 2022) https://bit.ly/33q5Mpm.
Please copy/paste the following text to properly cite this HowStuffWorks.com article:
The Impossible Physics of Faster-Than-Light Travel
Traveling faster than light is impossible. But if it weren't, what would it look like?
Traveling faster than the speed of light is a staple of science fiction. Whether it's jumping to hyperspace, engaging the warp drive, or opening the stargate, most stories about interstellar travel have some hack to get from point A to point B faster than light.
But here in the real world, we have to obey the laws of physics. And physics is very strict about nothing moving faster than the speed of light. Or is it? While the laws of relativity forbid you and I from moving faster than light, the mathematics of relativity still work even at faster-than-light speeds. This means we can find out what it would look like if we could break the universe's speed limit.
Picture two spaceships headed from Earth to a distant star 100 light-years away. The first ship leaves at 50 percent of the speed of light, so it would take 200 years to arrive. The second ship has some kind of warp drive and leaves at twice the speed of light, 100 years after the first. What does that look like?
This creates a kind of 'sonic boom' made of light
In relativity, the answer depends greatly on perspective. From the Earth, it looks like one ship leaves and travels a good distance before another ship moving four times as fast overtakes it. From the perspective of the slower ship, things look a little different.
The faster-than-light ship is moving so fast that it can outrun any light that it emits. This creates a kind of 'sonic boom' made of light, which produces some interesting effects. As the warp-capable ship overtakes the slower one, and after the two ships pass each other, the light the faster ship emits is still traveling to the slower one.
The result is that the first time the slower ship can see the faster one is when they're right on top of each other. From the perspective of the slower ship, the warp ship will simply appear out of nowhere. Then, the light from two directions will reach the slower ship all at once, and it will perceive two versions of the ship moving away in both directions.
From the perspective of the slower ship, the warp ship will simply appear out of nowhere.
There are all sorts of other strange results that happen when traveling faster than light, which might be why the universe forbids it. Unfortunately, it seems likely that warp drives and hyperspace shall forever exist only in the realm of science fiction.
Source: PBS Space Time
Viking Treasure Discovered on Norwegian Farm
Fossilized Finds Buried Under L.A. High School
Genome of 'Last Neanderthal' Has Been Sequenced
Could This Metal Shard Be Alien Technology?
Scientists Find the Goldilocks of Wood Types
This 650-Foot Megatsunami Is Only the Beginning
Gore Pit from Battle of Waterloo Uncovered
Yukon Gold Miners Keep Finding Mummified Animals
Japan Is Building the First ‘Zeta-Class’ Computer
Could a New State of Matter Upend Physics?
Can We Finally Detect a Graviton?
Ocean Explorers Find Massive Underwater Mountain
What is the speed of light?
The speed of light is the speed limit of the universe. Or is it?
What is a light-year?
- Speed of light FAQs
- Special relativity
- Faster than light
- Slowing down light
- Faster-than-light travel
Bibliography
The speed of light traveling through a vacuum is exactly 299,792,458 meters (983,571,056 feet) per second. That's about 186,282 miles per second — a universal constant known in equations as "c," or light speed.
According to physicist Albert Einstein 's theory of special relativity , on which much of modern physics is based, nothing in the universe can travel faster than light. The theory states that as matter approaches the speed of light, the matter's mass becomes infinite. That means the speed of light functions as a speed limit on the whole universe . The speed of light is so immutable that, according to the U.S. National Institute of Standards and Technology , it is used to define international standard measurements like the meter (and by extension, the mile, the foot and the inch). Through some crafty equations, it also helps define the kilogram and the temperature unit Kelvin .
But despite the speed of light's reputation as a universal constant, scientists and science fiction writers alike spend time contemplating faster-than-light travel. So far no one's been able to demonstrate a real warp drive, but that hasn't slowed our collective hurtle toward new stories, new inventions and new realms of physics.
Related: Special relativity holds up to a high-energy test
A l ight-year is the distance that light can travel in one year — about 6 trillion miles (10 trillion kilometers). It's one way that astronomers and physicists measure immense distances across our universe.
Light travels from the moon to our eyes in about 1 second, which means the moon is about 1 light-second away. Sunlight takes about 8 minutes to reach our eyes, so the sun is about 8 light minutes away. Light from Alpha Centauri , which is the nearest star system to our own, requires roughly 4.3 years to get here, so Alpha Centauri is 4.3 light-years away.
"To obtain an idea of the size of a light-year, take the circumference of the Earth (24,900 miles), lay it out in a straight line, multiply the length of the line by 7.5 (the corresponding distance is one light-second), then place 31.6 million similar lines end to end," NASA's Glenn Research Center says on its website . "The resulting distance is almost 6 trillion (6,000,000,000,000) miles!"
Stars and other objects beyond our solar system lie anywhere from a few light-years to a few billion light-years away. And everything astronomers "see" in the distant universe is literally history. When astronomers study objects that are far away, they are seeing light that shows the objects as they existed at the time that light left them.
This principle allows astronomers to see the universe as it looked after the Big Bang , which took place about 13.8 billion years ago. Objects that are 10 billion light-years away from us appear to astronomers as they looked 10 billion years ago — relatively soon after the beginning of the universe — rather than how they appear today.
Related: Why the universe is all history
Speed of light FAQs answered by an expert
We asked Rob Zellem, exoplanet-hunter and staff scientist at NASA's Jet Propulsion Lab, a few frequently asked questions about the speed of light.
Dr. Rob Zellem is a staff scientist at NASA's Jet Propulsion Laboratory, a federally funded research and development center operated by the California Institute of Technology. Rob is the project lead for Exoplanet Watch, a citizen science project to observe exoplanets, planets outside of our own solar system, with small telescopes. He is also the Science Calibration lead for the Nancy Grace Roman Space Telescope's Coronagraph Instrument, which will directly image exoplanets.
What is faster than the speed of light?
Nothing! Light is a "universal speed limit" and, according to Einstein's theory of relativity, is the fastest speed in the universe: 300,000 kilometers per second (186,000 miles per second).
Is the speed of light constant?
The speed of light is a universal constant in a vacuum, like the vacuum of space. However, light *can* slow down slightly when it passes through an absorbing medium, like water (225,000 kilometers per second = 140,000 miles per second) or glass (200,000 kilometers per second = 124,000 miles per second).
Who discovered the speed of light?
One of the first measurements of the speed of light was by Rømer in 1676 by observing the moons of Jupiter . The speed of light was first measured to high precision in 1879 by the Michelson-Morley Experiment.
How do we know the speed of light?
Rømer was able to measure the speed of light by observing eclipses of Jupiter's moon Io. When Jupiter was closer to Earth, Rømer noted that eclipses of Io occurred slightly earlier than when Jupiter was farther away. Rømer attributed this effect due the time it takes for light to travel over the longer distance when Jupiter was farther from the Earth.
How did we learn the speed of light?
As early as the 5th century BC, Greek philosophers like Empedocles and Aristotle disagreed on the nature of light speed. Empedocles proposed that light, whatever it was made of, must travel and therefore, must have a rate of travel. Aristotle wrote a rebuttal of Empedocles' view in his own treatise, On Sense and the Sensible , arguing that light, unlike sound and smell, must be instantaneous. Aristotle was wrong, of course, but it would take hundreds of years for anyone to prove it.
In the mid 1600s, the Italian astronomer Galileo Galilei stood two people on hills less than a mile apart. Each person held a shielded lantern. One uncovered his lantern; when the other person saw the flash, he uncovered his too. But Galileo's experimental distance wasn't far enough for his participants to record the speed of light. He could only conclude that light traveled at least 10 times faster than sound.
In the 1670s, Danish astronomer Ole Rømer tried to create a reliable timetable for sailors at sea, and according to NASA , accidentally came up with a new best estimate for the speed of light. To create an astronomical clock, he recorded the precise timing of the eclipses of Jupiter's moon , Io, from Earth . Over time, Rømer observed that Io's eclipses often differed from his calculations. He noticed that the eclipses appeared to lag the most when Jupiter and Earth were moving away from one another, showed up ahead of time when the planets were approaching and occurred on schedule when the planets were at their closest or farthest points. This observation demonstrated what we today know as the Doppler effect, the change in frequency of light or sound emitted by a moving object that in the astronomical world manifests as the so-called redshift , the shift towards "redder", longer wavelengths in objects speeding away from us. In a leap of intuition, Rømer determined that light was taking measurable time to travel from Io to Earth.
Rømer used his observations to estimate the speed of light. Since the size of the solar system and Earth's orbit wasn't yet accurately known, argued a 1998 paper in the American Journal of Physics , he was a bit off. But at last, scientists had a number to work with. Rømer's calculation put the speed of light at about 124,000 miles per second (200,000 km/s).
In 1728, English physicist James Bradley based a new set of calculations on the change in the apparent position of stars caused by Earth's travels around the sun. He estimated the speed of light at 185,000 miles per second (301,000 km/s) — accurate to within about 1% of the real value, according to the American Physical Society .
Two new attempts in the mid-1800s brought the problem back to Earth. French physicist Hippolyte Fizeau set a beam of light on a rapidly rotating toothed wheel, with a mirror set up 5 miles (8 km) away to reflect it back to its source. Varying the speed of the wheel allowed Fizeau to calculate how long it took for the light to travel out of the hole, to the adjacent mirror, and back through the gap. Another French physicist, Leon Foucault, used a rotating mirror rather than a wheel to perform essentially the same experiment. The two independent methods each came within about 1,000 miles per second (1,609 km/s) of the speed of light.
Another scientist who tackled the speed of light mystery was Poland-born Albert A. Michelson, who grew up in California during the state's gold rush period, and honed his interest in physics while attending the U.S. Naval Academy, according to the University of Virginia . In 1879, he attempted to replicate Foucault's method of determining the speed of light, but Michelson increased the distance between mirrors and used extremely high-quality mirrors and lenses. Michelson's result of 186,355 miles per second (299,910 km/s) was accepted as the most accurate measurement of the speed of light for 40 years, until Michelson re-measured it himself. In his second round of experiments, Michelson flashed lights between two mountain tops with carefully measured distances to get a more precise estimate. And in his third attempt just before his death in 1931, according to the Smithsonian's Air and Space magazine, he built a mile-long depressurized tube of corrugated steel pipe. The pipe simulated a near-vacuum that would remove any effect of air on light speed for an even finer measurement, which in the end was just slightly lower than the accepted value of the speed of light today.
Michelson also studied the nature of light itself, wrote astrophysicist Ethan Siegal in the Forbes science blog, Starts With a Bang . The best minds in physics at the time of Michelson's experiments were divided: Was light a wave or a particle?
Michelson, along with his colleague Edward Morley, worked under the assumption that light moved as a wave, just like sound. And just as sound needs particles to move, Michelson and Morley and other physicists of the time reasoned, light must have some kind of medium to move through. This invisible, undetectable stuff was called the "luminiferous aether" (also known as "ether").
Though Michelson and Morley built a sophisticated interferometer (a very basic version of the instrument used today in LIGO facilities), Michelson could not find evidence of any kind of luminiferous aether whatsoever. Light, he determined, can and does travel through a vacuum.
"The experiment — and Michelson's body of work — was so revolutionary that he became the only person in history to have won a Nobel Prize for a very precise non-discovery of anything," Siegal wrote. "The experiment itself may have been a complete failure, but what we learned from it was a greater boon to humanity and our understanding of the universe than any success would have been!"
Special relativity and the speed of light
Einstein's theory of special relativity unified energy, matter and the speed of light in a famous equation: E = mc^2. The equation describes the relationship between mass and energy — small amounts of mass (m) contain, or are made up of, an inherently enormous amount of energy (E). (That's what makes nuclear bombs so powerful: They're converting mass into blasts of energy.) Because energy is equal to mass times the speed of light squared, the speed of light serves as a conversion factor, explaining exactly how much energy must be within matter. And because the speed of light is such a huge number, even small amounts of mass must equate to vast quantities of energy.
In order to accurately describe the universe, Einstein's elegant equation requires the speed of light to be an immutable constant. Einstein asserted that light moved through a vacuum, not any kind of luminiferous aether, and in such a way that it moved at the same speed no matter the speed of the observer.
Think of it like this: Observers sitting on a train could look at a train moving along a parallel track and think of its relative movement to themselves as zero. But observers moving nearly the speed of light would still perceive light as moving away from them at more than 670 million mph. (That's because moving really, really fast is one of the only confirmed methods of time travel — time actually slows down for those observers, who will age slower and perceive fewer moments than an observer moving slowly.)
In other words, Einstein proposed that the speed of light doesn't vary with the time or place that you measure it, or how fast you yourself are moving.
Therefore, objects with mass cannot ever reach the speed of light. If an object ever did reach the speed of light, its mass would become infinite. And as a result, the energy required to move the object would also become infinite: an impossibility.
That means if we base our understanding of physics on special relativity (which most modern physicists do), the speed of light is the immutable speed limit of our universe — the fastest that anything can travel.
What goes faster than the speed of light?
Although the speed of light is often referred to as the universe's speed limit, the universe actually expands even faster. The universe expands at a little more than 42 miles (68 kilometers) per second for each megaparsec of distance from the observer, wrote astrophysicist Paul Sutter in a previous article for Space.com . (A megaparsec is 3.26 million light-years — a really long way.)
In other words, a galaxy 1 megaparsec away appears to be traveling away from the Milky Way at a speed of 42 miles per second (68 km/s), while a galaxy two megaparsecs away recedes at nearly 86 miles per second (136 km/s), and so on.
"At some point, at some obscene distance, the speed tips over the scales and exceeds the speed of light, all from the natural, regular expansion of space," Sutter explained. "It seems like it should be illegal, doesn't it?"
Special relativity provides an absolute speed limit within the universe, according to Sutter, but Einstein's 1915 theory regarding general relativity allows different behavior when the physics you're examining are no longer "local."
"A galaxy on the far side of the universe? That's the domain of general relativity, and general relativity says: Who cares! That galaxy can have any speed it wants, as long as it stays way far away, and not up next to your face," Sutter wrote. "Special relativity doesn't care about the speed — superluminal or otherwise — of a distant galaxy. And neither should you."
Does light ever slow down?
Light in a vacuum is generally held to travel at an absolute speed, but light traveling through any material can be slowed down. The amount that a material slows down light is called its refractive index. Light bends when coming into contact with particles, which results in a decrease in speed.
For example, light traveling through Earth's atmosphere moves almost as fast as light in a vacuum, slowing down by just three ten-thousandths of the speed of light. But light passing through a diamond slows to less than half its typical speed, PBS NOVA reported. Even so, it travels through the gem at over 277 million mph (almost 124,000 km/s) — enough to make a difference, but still incredibly fast.
Light can be trapped — and even stopped — inside ultra-cold clouds of atoms, according to a 2001 study published in the journal Nature . More recently, a 2018 study published in the journal Physical Review Letters proposed a new way to stop light in its tracks at "exceptional points," or places where two separate light emissions intersect and merge into one.
Researchers have also tried to slow down light even when it's traveling through a vacuum. A team of Scottish scientists successfully slowed down a single photon, or particle of light, even as it moved through a vacuum, as described in their 2015 study published in the journal Science . In their measurements, the difference between the slowed photon and a "regular" photon was just a few millionths of a meter, but it demonstrated that light in a vacuum can be slower than the official speed of light.
Can we travel faster than light?
— Spaceship could fly faster than light
— Here's what the speed of light looks like in slow motion
— Why is the speed of light the way it is?
Science fiction loves the idea of "warp speed." Faster-than-light travel makes countless sci-fi franchises possible, condensing the vast expanses of space and letting characters pop back and forth between star systems with ease.
But while faster-than-light travel isn't guaranteed impossible, we'd need to harness some pretty exotic physics to make it work. Luckily for sci-fi enthusiasts and theoretical physicists alike, there are lots of avenues to explore.
All we have to do is figure out how to not move ourselves — since special relativity would ensure we'd be long destroyed before we reached high enough speed — but instead, move the space around us. Easy, right?
One proposed idea involves a spaceship that could fold a space-time bubble around itself. Sounds great, both in theory and in fiction.
"If Captain Kirk were constrained to move at the speed of our fastest rockets, it would take him a hundred thousand years just to get to the next star system," said Seth Shostak, an astronomer at the Search for Extraterrestrial Intelligence (SETI) Institute in Mountain View, California, in a 2010 interview with Space.com's sister site LiveScience . "So science fiction has long postulated a way to beat the speed of light barrier so the story can move a little more quickly."
Without faster-than-light travel, any "Star Trek" (or "Star War," for that matter) would be impossible. If humanity is ever to reach the farthest — and constantly expanding — corners of our universe, it will be up to future physicists to boldly go where no one has gone before.
Additional resources
For more on the speed of light, check out this fun tool from Academo that lets you visualize how fast light can travel from any place on Earth to any other. If you’re more interested in other important numbers, get familiar with the universal constants that define standard systems of measurement around the world with the National Institute of Standards and Technology . And if you’d like more on the history of the speed of light, check out the book " Lightspeed: The Ghostly Aether and the Race to Measure the Speed of Light " (Oxford, 2019) by John C. H. Spence.
Aristotle. “On Sense and the Sensible.” The Internet Classics Archive, 350AD. http://classics.mit.edu/Aristotle/sense.2.2.html .
D’Alto, Nick. “The Pipeline That Measured the Speed of Light.” Smithsonian Magazine, January 2017. https://www.smithsonianmag.com/air-space-magazine/18_fm2017-oo-180961669/ .
Fowler, Michael. “Speed of Light.” Modern Physics. University of Virginia. Accessed January 13, 2022. https://galileo.phys.virginia.edu/classes/252/spedlite.html#Albert%20Abraham%20Michelson .
Giovannini, Daniel, Jacquiline Romero, Václav Potoček, Gergely Ferenczi, Fiona Speirits, Stephen M. Barnett, Daniele Faccio, and Miles J. Padgett. “Spatially Structured Photons That Travel in Free Space Slower than the Speed of Light.” Science, February 20, 2015. https://www.science.org/doi/abs/10.1126/science.aaa3035 .
Goldzak, Tamar, Alexei A. Mailybaev, and Nimrod Moiseyev. “Light Stops at Exceptional Points.” Physical Review Letters 120, no. 1 (January 3, 2018): 013901. https://doi.org/10.1103/PhysRevLett.120.013901 .
Hazen, Robert. “What Makes Diamond Sparkle?” PBS NOVA, January 31, 2000. https://www.pbs.org/wgbh/nova/article/diamond-science/ .
“How Long Is a Light-Year?” Glenn Learning Technologies Project, May 13, 2021. https://www.grc.nasa.gov/www/k-12/Numbers/Math/Mathematical_Thinking/how_long_is_a_light_year.htm .
American Physical Society News. “July 1849: Fizeau Publishes Results of Speed of Light Experiment,” July 2010. http://www.aps.org/publications/apsnews/201007/physicshistory.cfm .
Liu, Chien, Zachary Dutton, Cyrus H. Behroozi, and Lene Vestergaard Hau. “Observation of Coherent Optical Information Storage in an Atomic Medium Using Halted Light Pulses.” Nature 409, no. 6819 (January 2001): 490–93. https://doi.org/10.1038/35054017 .
NIST. “Meet the Constants.” October 12, 2018. https://www.nist.gov/si-redefinition/meet-constants .
Ouellette, Jennifer. “A Brief History of the Speed of Light.” PBS NOVA, February 27, 2015. https://www.pbs.org/wgbh/nova/article/brief-history-speed-light/ .
Shea, James H. “Ole Ro/Mer, the Speed of Light, the Apparent Period of Io, the Doppler Effect, and the Dynamics of Earth and Jupiter.” American Journal of Physics 66, no. 7 (July 1, 1998): 561–69. https://doi.org/10.1119/1.19020 .
Siegel, Ethan. “The Failed Experiment That Changed The World.” Forbes, April 21, 2017. https://www.forbes.com/sites/startswithabang/2017/04/21/the-failed-experiment-that-changed-the-world/ .
Stern, David. “Rømer and the Speed of Light,” October 17, 2016. https://pwg.gsfc.nasa.gov/stargaze/Sun4Adop1.htm .
Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].
Get the Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Vicky Stein is a science writer based in California. She has a bachelor's degree in ecology and evolutionary biology from Dartmouth College and a graduate certificate in science writing from the University of California, Santa Cruz (2018). Afterwards, she worked as a news assistant for PBS NewsHour, and now works as a freelancer covering anything from asteroids to zebras. Follow her most recent work (and most recent pictures of nudibranchs) on Twitter.
The bubbling surface of a distant star was captured on video for the 1st time ever
Just how dark is the universe? NASA's New Horizons probe gives us best estimate yet
'Astroneer' is getting a surprise expansion 8 years after launch (video)
Most Popular
- 2 China prepares for 1st launch of new Long March 8A rocket
- 3 'Surprising' warmth above Antarctica is earliest observed on record
- 4 James Webb Telescope goes 'extreme' and spots baby stars at the edge of the Milky Way (image)
- 5 Could we turn the sun into a gigantic telescope?
Drivers must not drive faster than 50mph if light appears on dashboard
Kwik Fit have spoken out to back up Scotty Kilmer, a viral content creator and US mechanic, who posts driving and motoring tips to his YouTube page.
- 13:52, 16 SEP 2024
Get the latest Birmingham Live breaking news on WhatsApp
Our community members are treated to special offers, promotions and adverts from us and our partners. You can check out at any time. More info
Drivers have been told to drive at a maximum 50mph if a light appears on their dashboard. Kwik Fit have spoken out to back up Scotty Kilmer, a viral content creator and US mechanic, who posts driving and motoring tips to his YouTube page.
“Today I’m going to show you what it means when this little symbol comes up on your dash," Scotty said. “It’s supposed to be a picture of a squashed tyre with an exclamation point in the middle warning you that your tyre pressure is low.
“So go get a tyre pressure gauge and check all the tyres. In this case, it’s a right rear tyre, it only has 22psi and the others have 34psi. In this case, it’s got a roofing nail in it that needs fixing.” Scotty added: “But if all your tyres are full of air it means the warning system is broken. It could be that the battery is worn out.
READ MORE Drivers refunded after being 'wrongly charged' due to camera position
“Each wheel has a battery in the sensor. It could be the main unit is bad. It costs a lot of money to fix them generally. So if that’s the case, heck, buy a gauge for dic bucks and check them yourself.” Tyres will let you drive far enough to reach assistance, but you should be aware that you shouldn't drive faster than 50mph for more than 50 miles as this can make the tyres unsafe.
Kwik Fit says: "The speed limit can even be lower on some models, so be sure before you get back to driving." Replying to Scotty, a driver said: "Our 2013 Highlander had a warning light but kept coming on every time the temperature made a white swing.
"We switched from the dealer servicing our vehicles to a local mechanic. We asked him why and for no charge he checked each wheel sensor band found two were defective. It cost us only $4" A second said: "I got a gauge. Works like a charm. I was told last time that I got new tires that new tpms was gonna cost over $300.
"Haven't had tpms in almost 3 years. I chuckled and said I was good."
- Midlands traffic and travel
- Most Recent
IMAGES
VIDEO
COMMENTS
The closest humankind has ever come to reaching the speed of light is inside of powerful particle accelerators like the Large Hadron Collider and the Tevatron. These colossal machines accelerate subatomic particles to more than 99.99 percent the speed of light, but as Physics Nobel laureate David Gross explains, these particles will never reach ...
1. The Big Bang itself expanded much faster than the speed of light. But this only means that "nothing can go faster than light.". Since nothing is just empty space or vacuum, it can expand ...
Faster-than-light (superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (c). The special theory of relativity implies that only particles with zero rest mass (i.e., photons) may travel at the speed of light, and that nothing may travel faster.
So, according to de Rham, the only thing capable of traveling faster than the speed of light is, somewhat paradoxically, light itself, though only when not in the vacuum of space. Of note ...
Symmetry is a physics concept that goes all the way back to Galileo's time. The secret to faster-than-light physics could be to double down on the number of dimensions. Specifically, the ...
If humanity wants to travel between stars, people are going to need to travel faster than light. New research suggests that it might be possible to build warp drives and beat the galactic speed limit.
1) Electromagnetic Fields. Most of the processes that accelerate particles to relativistic speeds work with electromagnetic fields — the same force that keeps magnets on your fridge. The two components, electric and magnetic fields, like two sides of the same coin, work together to whisk particles at relativistic speeds throughout the universe.
This would lead to two types of particles existing in the universe; bradyons that travel slower than light and compose all the matter we see around us, and tachyons traveling faster than light ...
The phenomenon that makes particles in space appear to travel faster than light is called superluminal motion. The phrase fits the illusion: It means "more than light," but actually describes ...
The ability to go faster than light would allow effects to happen before their causes. In essence, time travel into the past would be possible with faster-than-light travel. Since we view time as ...
An Italian experiment has unveiled evidence that fundamental particles known as neutrinos can travel faster than light. Other researchers are cautious about the result, but if it stands further ...
After all, the prospect of faster-than-light (FTL) travel has been a science fiction staple for decades, from wormholes and Star Trek's original warp drive, ...
This is an area that attracts plenty of bright ideas, each offering a different approach to solving the puzzle of faster-than-light travel: achieving a means of sending something across space at superluminal speeds.. Hypothetical travel times to Proxima Centauri, the nearest-known star to the Sun. (E. Lentz) There are some problems with this notion, however.
But so far, faster-than-light travel is possible only in science fiction. In Isaac Asimov's Foundation series , humanity can travel from planet to planet, star to star or across the universe ...
New research suggests that it might be possible to build warp drives and beat the galactic speed limit. Faster than light travel is the only way humans could ever get to other stars in a ...
Scientists have extended Einstein's equations for faster-than-light travel. Here a three-dimensional (right) graph shows the relationship between three different velocities: v, u and U, where v is ...
1. Hyperdrive. Popularized by Star Wars and used extensively in fiction, a hyperdrive enables a spaceship to travel at FTL speeds by entering another dimension known as "hyperspace.". The ...
The Impossible Physics of Faster-Than-Light Travel; Eric Adams. Eric Adams is a writer and photographer who focuses on technology, transportation, science, travel, and other subjects for a wide ...
As an object approaches the speed of light, its mass rises precipitously. If an object tries to travel 186,000 miles per second, its mass becomes infinite, and so does the energy required to move it. For this reason, no normal object can travel as fast or faster than the speed of light. That answers our question, but let's have a little fun and ...
In short, quantum tunneling seemed to allow faster-than-light travel, a supposed physical impossibility. "After the Hartman effect, that's when people started to worry," said Steinberg. The discussion spiraled for decades, in part because the tunneling-time question seemed to scratch at some of the most enigmatic aspects of quantum mechanics.
The faster-than-light ship is moving so fast that it can outrun any light that it emits. This creates a kind of 'sonic boom' made of light, which produces some interesting effects. As the warp ...
1 To travel backward in time, the spacecraft's velocity must exceed: where u is the velocity of the planet relative to Earth, and c is the speed of light. Seth Lloyd, professor of quantum ...
The speed of light in a vacuum is 186,282 miles per second (299,792 kilometers per second), and in theory nothing can travel faster than light.
Drivers have been told to drive at a maximum 50mph if a light appears on their dashboard. Kwik Fit have spoken out to back up Scotty Kilmer, a viral content creator and US mechanic, who posts ...
Imagine spending your day surrounded by groves of trees from around the world, basking in the peacefulness of a Japanese garden or watching chimpanzees groom, forage and socialize. Now imagine enjoying those memorable experiences all in one day. You can find it all at Washington Park, which occupies more than 400 acres just west of downtown Portland in the city's West Hills.