The planet Uranus, seen as a greenish-blue sphere, is suspended in outer space against an illuminated line of stars to represent the Milky Way Galaxy.

New images reveal what Neptune and Uranus really look like

Neptune is fondly known for being a rich blue and Uranus green – but a new study has revealed that the two ice giants are actually far closer in colour than typically thought. The research, led by Professor Patrick Irwin from the University of Oxford’s Department of Physics, has been published today in the Monthly Notices of the Royal Astronomical Society .

A portrait photograph of Patrick Irwin, a middle-aged man with greyish brown hair.

However, astronomers have long known that most modern images of the two planets do not accurately reflect their true colours. The misconception arose because images captured of both planets during the 20th century – including by NASA’s Voyager 2 mission, the only spacecraft to fly past these worlds – recorded images in separate colours.

The single-colour images were later recombined to create composite colour images, which were not always accurately balanced to achieve a “true” colour image, and – particularly in the case of Neptune – were often made “too blue”. In addition, the early Neptune images from Voyager 2 were strongly contrast enhanced to better reveal the clouds, bands, and winds that shape our modern perspective of Neptune.

Professor Irwin said: ‘Although the familiar Voyager 2 images of Uranus were published in a form closer to “true” colour, those of Neptune were, in fact, stretched and enhanced, and therefore made artificially too blue.’

‘Even though the artificially-saturated colour was known at the time amongst planetary scientists – and the images were released with captions explaining it – that distinction had become lost over time. Applying our model to the original data, we have been able to reconstitute the most accurate representation yet of the colour of both Neptune and Uranus.’

In the new study, the researchers used data from Hubble Space Telescope’s Space Telescope Imaging Spectrograph (STIS) and the Multi Unit Spectroscopic Explorer (MUSE) on the European Southern Observatory’s Very Large Telescope. In both instruments, each pixel is a continuous spectrum of colours. This means that STIS and MUSE observations can be unambiguously processed to determine the true apparent colour of Uranus and Neptune.

The researchers used these data to re-balance the composite colour images recorded by the Voyager 2 camera, and also by the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). This revealed that Uranus and Neptune are actually a rather similar shade of greenish blue. The main difference is that Neptune has a slight hint of additional blue, which the model reveals to be due to a thinner haze layer on that planet.

The study also provides an answer to the long-standing mystery of why Uranus’s colour changes slightly during its 84-year orbit of the Sun.

A comparison of the ‘traditional’ images of Uranus and Neptune, and the new images produced by this study. The previous images show the planets as having distinct colours; the new images show them as having a very similar shade.

The authors came to their conclusion after first comparing images of the ice giant to measurements of its brightness, which were recorded by the Lowell Observatory in Arizona from 1950 – 2016 at blue and green wavelengths. These measurements showed that Uranus appears a little greener at its solstices (i.e. summer and winter), when one of the planet’s poles is pointed towards our star. But during its equinoxes – when the Sun is over the equator – it has a somewhat bluer tinge.

Part of the reason for this was known to be because Uranus has a highly unusual spin. It effectively spins almost on its side during its orbit, meaning that during the planet’s solstices either its north or south pole points almost directly towards the Sun and Earth. This is important because any changes to the reflectivity of the polar regions would therefore have a big impact on Uranus’s overall brightness when viewed from our planet.

The planetary group in Oxford has had a long history of involvement in the exploration of the solar system’s giant planets, including the Galileo mission to Jupiter; the Cassini/Huygen missions to Saturn; and ground-based observations using some of the world’s largest telescopes. Most recently of all, we are currently analysing the fantastic new data of Uranus from the James Webb Space Telescope. This is proving quite a challenge to reconcile with the planetary atmospheric models we have developed to simulate existing observations of Uranus. But then science is meant to be challenging - it wouldn’t be fun if it was too easy! Professor Patrick Irwin , Department of Physics, University of Oxford

What astronomers were less clear about is how or why this reflectivity differs. This led the researchers to develop a model which compared the spectra of Uranus’s polar regions to its equatorial regions.

It found that the polar regions are more reflective at green and red wavelengths than at blue wavelengths, partly because methane, which is red absorbing, is about half as abundant near the poles than the equator.

However, this wasn’t enough to fully explain the colour change so the researchers added a new variable to the model in the form of a “hood” of gradually thickening icy haze which has previously been observed over the summer, sunlit pole as the planet moves from equinox to solstice. Astronomers think this is likely to be made up of methane ice particles. When simulated in the model, the ice particles further increased the reflection at green and red wavelengths at the poles, offering an explanation as to why Uranus is greener at the solstice.

Professor Irwin said: “This is the first study to match a quantitative model to imaging data to explain why the colour of Uranus changes during its orbit. In this way, we have demonstrated that Uranus is greener at the solstice due to the polar regions having reduced methane abundance but also an increased thickness of brightly scattering methane ice particles.”

Dr Heidi Hammel, of the Association of Universities for Research in Astronomy (AURA), who has spent decades studying Neptune and Uranus but was not involved in the study, said: “The misperception of Neptune’s colour, as well as the unusual colour changes of Uranus, have bedevilled us for decades. This comprehensive study should finally put both issues to rest.”

The study ‘Modelling the seasonal cycle of Uranus’s colour and magnitude, and comparison with Neptune’, has been published in Monthly Notices of the Royal Astronomical Society .

Subscribe to News

DISCOVER MORE

  • Support Oxford's research
  • Partner with Oxford on research
  • Study at Oxford
  • Research jobs at Oxford

You can view all news or browse by category

  • Become A Member
  • Gift Membership
  • Kids Membership
  • Other Ways to Give
  • Explore Worlds
  • Defend Earth

How We Work

  • Education & Public Outreach
  • Space Policy & Advocacy
  • Science & Technology
  • Global Collaboration

Our Results

Learn how our members and community are changing the worlds.

Our citizen-funded spacecraft successfully demonstrated solar sailing for CubeSats.

Space Topics

  • Planets & Other Worlds
  • Space Missions
  • Space Policy
  • Planetary Radio
  • Space Images

The Planetary Report

The eclipse issue.

Science and splendor under the shadow.

Get Involved

Membership programs for explorers of all ages.

Get updates and weekly tools to learn, share, and advocate for space exploration.

Volunteer as a space advocate.

Support Our Mission

  • Renew Membership
  • Society Projects

The Planetary Fund

Accelerate progress in our three core enterprises — Explore Worlds, Find Life, and Defend Earth. You can support the entire fund, or designate a core enterprise of your choice.

  • Strategic Framework
  • News & Press

The Planetary Society

Know the cosmos and our place within it.

Our Mission

Empowering the world's citizens to advance space science and exploration.

  • Explore Space
  • Take Action
  • Member Community
  • Account Center
  • “Exploration is in our nature.” - Carl Sagan

Bruce Murray Space Image Library

Neptune from Voyager

Jónsson describes the processing required to make this as-true-as-possible-color view of Neptune from Voyager data:

I reprojected everything to simple cylindrical projection, aligning the color channels there (i.e. in effect rotating them around Neptune's axis of rotation) and then rendering the map on an ellipsoid without applying any illumination, instead making Neptune self-illuminating. Following this the limb and terminator didn't have realistic color because the three images were obtained over a period of 18 minutes due to the need to transmit them to Earth in real time. I fixed this by making a "regular" color composite (the features near the center of the disk looked horrible in that one) and then "cloning" the color from the limb and terminator in that version to the rendered image. This combined the best features of both versions of the color composite. This I did using Photoshop. This was followed by fairly extensive manual cleanup ecause there were still some spurious features present due to noise in the source images. So this is a very heavily processed image. I then altered the color balance a bit by making a synthetic red image; this made the image a bit more blue. This step was necessary because Voyager's vidicon cameras were not sensitive to light beyond orange wavelengths. The final step was to make the bright clouds around the Great Dark Spot a bit more white. These two steps were somewhat arbitrary but using various other images as a guide (Hubble images of both Uranus and Neptune and the Voyager 2 Uranus-Neptune color difference) I think this significantly improved the color balance. I'm pretty sure this is more realistic than most of the "official" images - the blue color must be too strong and saturated in them. Also most of the official images were made from only two source images, often green and clear. The final step would usually have been to sharpen the images slightly but in this case doing so brings out too much noise in my opinion. It would be an interesting future project to make a 2x2 color mosaic of Neptune but I'm not even sure it's possible due to the long time it took to acquire the required images. So making a high resolution global map and rendering that from any angle might be the only way to get higher resolution global "images."

For full functionality of this site it is necessary to enable JavaScript. Here are instructions on how to enable JavaScript in your web browser .

Inside NASA's 5-month fight to save the Voyager 1 mission in interstellar space

Artist's concept depicts NASA's Voyager 1 spacecraft entering interstellar space.

After working for five months to re-establish communication with the farthest-flung human-made object in existence, NASA announced this week that the Voyager 1 probe had finally phoned home.

For the engineers and scientists who work on NASA’s longest-operating mission in space, it was a moment of joy and intense relief.

“That Saturday morning, we all came in, we’re sitting around boxes of doughnuts and waiting for the data to come back from Voyager,” said Linda Spilker, the project scientist for the Voyager 1 mission at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We knew exactly what time it was going to happen, and it got really quiet and everybody just sat there and they’re looking at the screen.”

When at long last the spacecraft returned the agency’s call, Spilker said the room erupted in celebration.

“There were cheers, people raising their hands,” she said. “And a sense of relief, too — that OK, after all this hard work and going from barely being able to have a signal coming from Voyager to being in communication again, that was a tremendous relief and a great feeling.”

Members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

The problem with Voyager 1 was first detected in November . At the time, NASA said it was still in contact with the spacecraft and could see that it was receiving signals from Earth. But what was being relayed back to mission controllers — including science data and information about the health of the probe and its various systems — was garbled and unreadable.

That kicked off a monthslong push to identify what had gone wrong and try to save the Voyager 1 mission.

Spilker said she and her colleagues stayed hopeful and optimistic, but the team faced enormous challenges. For one, engineers were trying to troubleshoot a spacecraft traveling in interstellar space , more than 15 billion miles away — the ultimate long-distance call.

“With Voyager 1, it takes 22 1/2 hours to get the signal up and 22 1/2 hours to get the signal back, so we’d get the commands ready, send them up, and then like two days later, you’d get the answer if it had worked or not,” Spilker said.

A Titan/Centaur-6 launch vehicle carries NASA's Voyager 1 at the Kennedy Space Center on Sept. 5, 1977.

The team eventually determined that the issue stemmed from one of the spacecraft’s three onboard computers. Spilker said a hardware failure, perhaps as a result of age or because it was hit by radiation, likely messed up a small section of code in the memory of the computer. The glitch meant Voyager 1 was unable to send coherent updates about its health and science observations.

NASA engineers determined that they would not be able to repair the chip where the mangled software is stored. And the bad code was also too large for Voyager 1's computer to store both it and any newly uploaded instructions. Because the technology aboard Voyager 1 dates back to the 1960s and 1970s, the computer’s memory pales in comparison to any modern smartphone. Spilker said it’s roughly equivalent to the amount of memory in an electronic car key.

The team found a workaround, however: They could divide up the code into smaller parts and store them in different areas of the computer’s memory. Then, they could reprogram the section that needed fixing while ensuring that the entire system still worked cohesively.

That was a feat, because the longevity of the Voyager mission means there are no working test beds or simulators here on Earth to test the new bits of code before they are sent to the spacecraft.

“There were three different people looking through line by line of the patch of the code we were going to send up, looking for anything that they had missed,” Spilker said. “And so it was sort of an eyes-only check of the software that we sent up.”

The hard work paid off.

NASA reported the happy development Monday, writing in a post on X : “Sounding a little more like yourself, #Voyager1.” The spacecraft’s own social media account responded , saying, “Hi, it’s me.”

So far, the team has determined that Voyager 1 is healthy and operating normally. Spilker said the probe’s scientific instruments are on and appear to be working, but it will take some time for Voyager 1 to resume sending back science data.

Voyager 1 and its twin, the Voyager 2 probe, each launched in 1977 on missions to study the outer solar system. As it sped through the cosmos, Voyager 1 flew by Jupiter and Saturn, studying the planets’ moons up close and snapping images along the way.

Voyager 2, which is 12.6 billion miles away, had close encounters with Jupiter, Saturn, Uranus and Neptune and continues to operate as normal.

In 2012, Voyager 1 ventured beyond the solar system , becoming the first human-made object to enter interstellar space, or the space between stars. Voyager 2 followed suit in 2018.

Spilker, who first began working on the Voyager missions when she graduated college in 1977, said the missions could last into the 2030s. Eventually, though, the probes will run out of power or their components will simply be too old to continue operating.

Spilker said it will be tough to finally close out the missions someday, but Voyager 1 and 2 will live on as “our silent ambassadors.”

Both probes carry time capsules with them — messages on gold-plated copper disks that are collectively known as The Golden Record . The disks contain images and sounds that represent life on Earth and humanity’s culture, including snippets of music, animal sounds, laughter and recorded greetings in different languages. The idea is for the probes to carry the messages until they are possibly found by spacefarers in the distant future.

“Maybe in 40,000 years or so, they will be getting relatively close to another star,” Spilker said, “and they could be found at that point.”

neptune images voyager

Denise Chow is a reporter for NBC News Science focused on general science and climate change.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Colorado River

NASA-Led Study Provides New Global Accounting of Earth’s Rivers

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Psyche spacecraft is shown in a clean room

NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

neptune images voyager

NASA Shares Lessons of Human Systems Integration with Industry

Most mountains on the Earth are formed as plates collide and the crust buckles. Not so for the Moon, where mountains are formed as a result of impacts as seen by NASA Lunar Reconnaissance Orbiter.

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

three men standing beside a small, black piece of space satellite hardware

NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Mars Science Laboratory: Curiosity Rover

Mars Science Laboratory: Curiosity Rover

Hubble Spots a Magnificent Barred Galaxy

Hubble Spots a Magnificent Barred Galaxy

The Crab Nebula, the result of a bright supernova explosion seen by Chinese and other astronomers in the year 1054, is 6,500 light-years from Earth. At its center is a neutron star, a super-dense star produced by the supernova. As it rotates at about 30 times per second, its beam of radiation passes over the Earth every orbit, like a cosmic lighthouse. As the young pulsar slows down, large amounts of energy are injected into its surroundings. In particular, a high-speed wind of matter and anti-matter particles plows into the surrounding nebula, creating a shock wave that forms the expanding ring seen in the movie. Jets from the poles of the pulsar spew X-ray emitting matter and antimatter particles in a direction perpendicular to the ring. This image show the X-ray data from Chandra along with infrared data from the Webb space telescope.

NASA’s Chandra Releases Doubleheader of Blockbuster Hits

Explore the Universe with the First E-Book from NASA’s Fermi

Explore the Universe with the First E-Book from NASA’s Fermi

Julia Chavez

NASA Grant Brings Students at Underserved Institutions to the Stars

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

neptune images voyager

NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

Swimming in water, A beaver family nibbles on aspen branches in Spawn Creek, Utah.

NASA Data Helps Beavers Build Back Streams

The PACE spacecraft sending data down over radio frequency links to an antenna on Earth. The science images shown are real photos from the PACE mission.

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

neptune images voyager

Washington State High Schooler Wins 2024 NASA Student Art Contest

neptune images voyager

NASA STEM Artemis Moon Trees

neptune images voyager

Kiyun Kim: From Intern to Accessibility Advocate

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

30 years ago: voyager 2 explores neptune, johnson space center.

In the summer of 1989, NASA’s Voyager 2 became the first spacecraft to fly by Neptune, its final planetary encounter. Managed by the Jet Propulsion Laboratory in Pasadena, California, Voyagers 1 and 2 were a pair of spacecraft launched in 1977 to explore the outer planets. Initially targeted only to visit Jupiter and Saturn, Voyager 2 took advantage of a rare planetary alignment that occurs once every 175 years to complete two additional encounters in the outer solar system. In January 1986, Voyager 2 became the first spacecraft to investigate Uranus and used that planet’s gravity to alter its trajectory to explore Neptune, the outermost planet of the solar system. Because of Neptune’s great distance from the Sun, engineers made changes to Voyager’s imaging techniques to accommodate light levels only 3% of what they were during the Jupiter encounter. Short exposures were on the order of 15 seconds while longer ones were measured in minutes. Image motion compensation techniques were programmed into Voyager’s computer to maintain clear photographs at those long exposures coupled with the spacecraft’s velocity. NASA also upgraded the tracking antennas of the Deep Space Network to increase their sensitivity to receive Voyager’s signals from Neptune’s distance. Because of its remoteness, relatively little was known about Neptune prior to the Voyager encounter. It had two known moons, the larger Triton orbiting relatively close to the planet but in a retrograde direction, indicating it might have been captured by Neptune, and tiny Nereid in a far-flung but posigrade orbit. Observations from Earth seemed to indicate that Neptune was encircled by dark rings or ring arcs, but the evidence was inconclusive.

voyager_2_launch

Each Voyager carried a suite of 11 instruments, including: 

  • an imaging science system consisting of narrow-angle and wide-angle cameras to photograph the planet and its satellites;
  • a radio science system to determine the planet’s physical properties;
  • an infrared interferometer spectrometer to investigate local and global energy balance and atmospheric composition;
  • an ultraviolet spectrometer to measure atmospheric properties;
  • a magnetometer to analyze the planet’s magnetic field and interaction with the solar wind;
  • a plasma spectrometer to investigate microscopic properties of plasma ions;
  • a low energy charged particle device to measure fluxes and distributions of ions;
  • a cosmic ray detection system to determine the origin and behavior of cosmic radiation;
  • a planetary radio astronomy investigation to study radio emissions from Jupiter;
  • a photopolarimeter to measure the planet’s surface composition; and
  • a plasma wave system to study the planet’s magnetosphere.

voyager_instruments

Voyager 2 began to observe Neptune on June 5, 1989, at a distance of 73 million miles. Even at this range, Voyager’s images were already four times better than those obtained by Earth-based telescopes. It soon made the first of its many discoveries of the encounter: the moon later named Proteus orbiting about 73,000 miles from Neptune, and with a diameter of 260 miles actually larger than the known moon Nereid – it is not clear how it had escaped detection by Earth-based telescopes. By early August, Voyager 2 had discovered three more small moons (Despina, Galatea, and Larissa) orbiting closer to the planet than Proteus. Larissa had been spotted in 1981 but Voyager 2 confirmed its existence. The photographs of Neptune revealed a dynamic atmosphere including an Earth-sized storm system named the Great Dark Spot and wind speeds reaching up to 1,000 miles per hour. Voyager returned the first images of Neptune’s rings which turned out to be a system of five rings composed mostly of dark dust and discovered two more small moons (Thalassa and Naiad). Like at Saturn and Uranus, the rings and four of the moons at Neptune form an intricate interrelated system. The spacecraft also imaged Neptune’s previously discovered moon Nereid at low resolution from about 3 million miles away. Voyager discovered that Neptune’s magnetic field was not only tilted 47o from the planet’s axis but also significantly offset from the planet’s center.

voyager_2_neptune_from_35_000_000_miles

On Aug. 25, passing about 3,408 miles above Neptune’s north pole, Voyager 2 made its closest approach to any planet since leaving Earth in 1977. This close encounter trajectory allowed Voyager 2 to pass about 25,000 miles from Triton about five hours later. Triton was the last solid body the spacecraft explored and the encounter did not disappoint with several amazing discoveries. With relatively few impact craters, Triton’s surface is believed to be young, having been remodeled by melting. Despite Triton’s frigid -392o F surface temperature, Voyager’s images revealed evidence of geysers spewing dark material into the moon’s tenuous atmosphere that deposited back onto the surface. Voyager passed behind both Neptune and Triton, with instruments returning data about their atmospheres. The spacecraft also returned spectacular images of the two bodies backlit by the Sun. On its outbound journey, Voyager 2 continued to study Neptune until Oct. 2, 1989.  In all, it had returned more than 9,000 images of the planet, its rings and its moons as well as a treasure trove of scientific information, tremendously increasing our knowledge of the most distant planet in the solar system.

voyager_2_neptune_triton_southern_hemisphere

Following its reconnaissance of Neptune, Voyager 2 began its Interstellar Mission extension that continues to this day. Over the years, several of the spacecraft’s instruments have been turned off to conserve power, beginning with the imaging system in 1989, but it continues to return data about cosmic rays and the solar wind. On Nov. 5, 2018, six years after its twin, Voyager 2 crossed the heliopause, the boundary between the heliosphere, the bubble-like region of space created by the Sun, and the interstellar medium. It is expected that Voyager 2 will continue to return data from interstellar space until about 2025. And just in case it may one day be found by an alien intelligence, Voyager 2 like its twin carries a gold plated record that contains information about its home planet, including recordings of terrestrial sounds, music and greetings in 55 languages. Instructions on how to play the record are also included.

voyager_golden_record

Contact restored with NASA’s Voyager 1 space probe

neptune images voyager

Contact restored.

That was the message relieved NASA officials shared after the agency regained full contact with the Voyager 1 space probe, the most distant human-made object in the universe, scientists have announced.

For the first time since November, the spacecraft is returning usable data about the health and status of its onboard engineering systems, NASA said in a news release Monday.

The 46-year-old pioneering probe, now 15.1 billion miles from Earth, has continually defied expectations for its life span as it ventures farther into the  uncharted territory of the cosmos .

More: Voyager 1 is 15 billion miles from home and broken. Here's how NASA is trying to fix it.

Computer experts to the rescue

It wasn't as easy as hitting Control-Alt-Delete, but top experts at NASA and CalTech were able to fix the balky, ancient computer on board the probe that was causing the communication breakdown – at least for now.

A computer problem aboard Voyager 1 on Nov. 14, 2023, corrupted the stream of science and engineering data the craft sent to Earth,  making it unreadable .

Although the radio signal from the spacecraft had never ceased its connection to ground control operators on Earth, that signal had not carried any usable data since November, NASA said. After some serious sleuthing to fix the onboard computer, that changed on April 20, when NASA finally received usable data.

In interstellar space

The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between the stars).

Voyager 2 continues to operate normally, NASA reports. Launched  more than 46 years ago , the twin spacecraft are standouts on two fronts: they've operated the longest and traveled the farthest of any spacecraft ever.

Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

More: NASA gave Voyager 1 a 'poke' amid communication woes. Here's why the response was encouraging.

They were  designed to last five years but have become the longest-operating spacecraft in history. Both carry  gold-plated copper discs  containing sounds and images from Earth, content that was chosen by a team headed by celebrity astronomer  Carl Sagan .

For perspective, it was the summer of 1977 when the Voyager probes left Earth. "Star Wars" was No. 1 at the box office, Jimmy Carter was in the first year of his presidency, and Elvis Presley had just died.

Contributing: Eric Lagatta and George Petras

NASA Logo

Voyager at Neptune

In the summer of 1989, NASA's Voyager 2 became the first spacecraft to observe the planet Neptune up close, its final planetary target.

Popular Tags

  • Earth Observer
  • 2023 Technology Showcase for Planetary Science
  • James Webb Space Telescope
  • Hubble Space Telescope
  • James Webb Space Telescope - Science images
  • Earth Observatory Image of the Day
  • James Webb Space Telescope – Engineering images

A deep blue planet with wispy white clouds moving across its face.

  • Work & Careers
  • Life & Arts

Rejoice! Voyager 1 is back from the dead

Headshot for Anjana Ahuja

  • Rejoice! Voyager 1 is back from the dead on x (opens in a new window)
  • Rejoice! Voyager 1 is back from the dead on facebook (opens in a new window)
  • Rejoice! Voyager 1 is back from the dead on linkedin (opens in a new window)
  • Rejoice! Voyager 1 is back from the dead on whatsapp (opens in a new window)

Anjana Ahuja

Roula Khalaf, Editor of the FT, selects her favourite stories in this weekly newsletter.

The writer is a science commentator

A ghost has come back to life. Voyager 1, a spacecraft dispatched in the 1970s that had been sending signals back to Earth continuously until it malfunctioned in November, has been revived. Nasa engineers revealed last week that, thanks to some clever workarounds, they had remotely fixed the corrupted memory in one of its three onboard computers.

Gone is the melancholic string of ones and zeroes that signalled little beyond a pulse. Voyager 1, now outside the solar system and the most distant man-made object at 24bn km away, has begun sending meaningful signals once again.

The news feels both uplifting and bittersweet. Uplifting, because it embodies a golden age of space exploration that kicked off in the 1950s, put men on the moon, and gave us the first true glimpse of our planetary neighbourhood. Bittersweet, because this craft feels like a relic from a different era — one in which horizons were literally expanding, ambition and optimism were abundant, and technology seemed built to last.

The twin Voyager mission was launched in my childhood and, ever since, it has been hard not to romanticise it as a fellow traveller: sent off alone into the wilderness; writing home; reaching milestones; and now weakening as it glides into the void between stars. For those of us of a certain age, its timeline mirrors our own. Voyager 1 arrived at Saturn as I started secondary school, and its sister craft, Voyager 2, reached Uranus as I left. The latter approached Neptune while I danced at university balls. For me, it is more than a nostalgic cultural touchstone: its data featured in my doctoral thesis.

This week’s resuscitation is the epilogue to a sequence of historic missions to the outer planets, beginning with Pioneer in the early 1970s. Pioneer 10 became the first spacecraft to travel beyond Mars and through the asteroid belt; it beamed back the first close-up pictures of Jupiter and sent its last signal to Earth in 2003. Pioneer 11 journeyed successfully to Saturn, where it discovered a new ring and two moons — but went quiet in 1995.

This laid the groundwork for Voyager 1 and Voyager 2, launched a few days apart in 1977. That year, Jimmy Carter entered the White House, Pelé hung up his football boots and I queued with my brother at the cinema to watch the original Star Wars . The launch took advantage of a rare planetary alignment — happening just one every 175 years — that provided gravitational kicks along the journey, saving on propellant and time.

The twin spacecraft exceeded expectations at every orbital turn. Thanks to some nifty remote programming after launch, the mission to Jupiter and Saturn expanded into a four-planet odyssey, with Voyager 2 taking in fly-bys of the ice giants Uranus and Neptune. This “grand tour” rewrote planetary textbooks, furnishing new images and measurements of the outer planets, many moons and their associated magnetic fields.

Voyager 1 left the solar system in 2012. Its companion, also still functioning, exited in 2018. Today, signals from Earth to Voyager 1 — and vice versa — take more than 22 hours to arrive. Its power should last a few more years yet, during which scientists hope it will reveal characteristics of interstellar space.

As the sun runs out of fuel and dies in a few billion years, so will life on Earth (if it hasn’t before then). Assuming the pair survive the interstellar dust, the analogue technology on board will become a memento of a vanished civilisation. Each craft carries a Golden Record, with contents overseen by American astronomer Carl Sagan. Each 12-inch gold-plated, engraved copper disk contains sounds and images of life on Earth, including spoken greetings in 55 languages.

The Hebrew message is “Peace”. If Voyager 1 had its own voice, that would surely be its message back to us. 

Promoted Content

Follow the topics in this article.

  • Anjana Ahuja Add to myFT
  • Space exploration Add to myFT
  • Nasa Add to myFT

International Edition

More From Forbes

Nasa celebrates as 1977’s voyager 1 phones home at last.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar ... [+] space, or the space between stars, which it entered in 2012.

Voyager 1 has finally returned usable data to NASA from outside the solar system after five months offline.

Launched in 1977 and now in its 46th year, the probe has been suffering from communication issues since November 14. The same thing also happened in 2022 . However, this week, NASA said that engineers were finally able to get usable data about the health and status of its onboard engineering systems.

Fixing Voyager 1 has been slow work. It’s currently over 15 billion miles (24 billion kilometers) from Earth, which means a radio message takes about 22.5 hours to reach it—and the same again to receive an answer.

The problem appears to have been its flight data subsystem, one of the spacecraft’s three onboard computers. Its job is to package the science and engineering data before it’s sent to Earth. Since the computer chip that stores its memory and some of its code is broken, engineers had to reinsert that code into a new location.

Next up for engineers at NASA’s Jet Propulsion Laboratory in California is to adjust other parts of the FDS software so Voyager 1 can resume sending science data.

WhatsApp Brand New iPhone Feature Just Launched That s Much Easier To Use

New apple id password reset issue hitting iphone ipad and macbook users, apple’s iphone ai plans confirmed with new software upgrade, beyond the ‘heliopause’.

The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little earlier, on August 20, 1977. Voyager 2—now 12 billion miles away and traveling more slowly—continues to operate normally.

Both are now beyond what astronomers call the heliopause—a protective bubble of particles and magnetic fields created by the sun, which is thought to represent the sun’s farthest influence. Voyager 1 got to the heliopause in 2012 and Voyager 2 in 2018.

The Pale Blue Dot is a photograph of Earth taken Feb. 14, 1990, by NASA’s Voyager 1 at a distance of ... [+] 3.7 billion miles (6 billion kilometers) from the sun. The image inspired the title of scientist Carl Sagan's book, "Pale Blue Dot: A Vision of the Human Future in Space," in which he wrote: "Look again at that dot. That's here. That's home. That's us."

Pale Blue Dot

Since their launch from Cape Canaveral, Florida, aboard Titan-Centaur rockets, Voyager 1 and Voyager 2 have had glittering careers. Both photographed Jupiter and Saturn in 1979 and 1980 before going their separate ways. Voyager 1 could have visited Pluto, but that was sacrificed so scientists could get images of Saturn’s moon, Titan, a maneuver that made it impossible for it to reach any other body in the solar system. Meanwhile, Voyager 2 took slingshots around the planets to also image Uranus in 1986 and Neptune in 1989—the only spacecraft ever to image the two outer planets.

On February 14, 1990, when 3.7 billion miles from Earth, Voyager 1 turned its cameras back toward the sun and took an image that included our planet as “a mote of dust suspended in a sunbeam.” Known as the “Pale Blue Dot,” it’s one of the most famous photos ever taken. It was remastered in 2019 .

Wishing you clear skies and wide eyes.

Jamie Carter

  • Editorial Standards
  • Reprints & Permissions

NASA's Voyager 1 sending readable data back to Earth for 1st time in 5 months

The problem stemmed from a corrupted chip in one of the spacecraft's computers.

After more than five months without contact, NASA has finally reconnected with Voyager 1, the farthest spacecraft from Earth.

NASA's Jet Propulsion Lab (JPL) said Voyager 1 had not been sending readable data back to Earth since Nov. 14, 2023, despite the spacecraft still receiving mission controller commands.

In December 2023, the JPL announced the problem was with one of Voyager 1's onboard computers called the flight data subsystem (FDS). Engineers attempted to restart the computer, but the problem persisted, NASA said.

MORE: NASA asks for help studying Uranus and Neptune as it prepares to capture new images

However, the JPL announced this week that Voyager 1 had resumed sending engineering updates to Earth.

Engineers pinpointed the problem earlier this month, NASA said: A chip responsible for storing part of the computer's memory had become corrupted, making the data unreadable. The team was unable to repair the chip and decided the affected code needed to be stored elsewhere in the FDS memory, but no single location was large enough to do so, the JPL said in a release Monday.

PHOTO: This illustration provided by NASA depicts Voyager 1.

The team "devised a plan to divide the affected code into sections and store those sections in different places in the FDS," the release read. "To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole."

Related Stories

neptune images voyager

Fossil footprints unearth new 'megaraptor'

  • Apr 26, 12:16 PM

neptune images voyager

Iranian rapper Toomaj Salehi sentenced to death

  • Apr 24, 2:55 PM

neptune images voyager

152 people in West Virginia exposed to measles

  • Apr 26, 4:59 PM

The code that packages Voyager 1's engineering data was the first to be sent to its new location on April 18. The JPL said it takes 22.5 hours for a radio signal to reach Voyager 1 and another 22.5 hours for the signal to come back to Earth. When the team heard from Voyager 1 on April 20, they knew the fix was a success, the JPL said.

"Hi, it's me. - V1," the X account for Voyager 1 posted on Monday afternoon.

Over the next few weeks, more portions of the FDS software will be relocated and the team will work to enable the spacecraft to begin returning science data again, the JPL said.

MORE: NASA says it's revising the Mars Sample Return mission due to cost, long wait time

Voyager 1 was launched in September 1977 under the Voyager program to study the farther planets of the solar system and interstellar space. Voyager 1 entered interstellar space in 2012 becoming the first man-made object to exit the solar system.

Meanwhile, its twin spacecraft, Voyager 2, continues to "operate normally," according to the JPL. It reached interstellar space in 2018 and is the second-farthest spacecraft from Earth.

Related Topics

neptune images voyager

140,000 people did their taxes with the free IRS direct file pilot. But program's future is unclear

  • Apr 26, 12:59 PM

neptune images voyager

Biden says he's 'happy' to debate Trump

  • Apr 26, 3:09 PM

ABC News Live

24/7 coverage of breaking news and live events

NASA’s Voyager 1 Resumes Sending Engineering Updates to Earth

Voyager

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012.

After some inventive sleuthing, the mission team can — for the first time in five months — check the health and status of the most distant human-made object in existence.

For the first time since November , NASA’s Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA’s Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft’s three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it’s sent to Earth.

After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

The team discovered that a single chip responsible for storing a portion of the FDS memory — including some of the FDS computer’s software code — isn’t working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide the affected code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

The team started by singling out the code responsible for packaging the spacecraft’s engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22 ½ hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22 ½ hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification worked: For the first time in five months, they have been able to check the health and status of the spacecraft.

Get the Latest News from the Final Frontier

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago , the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Caltech in Pasadena, California, manages JPL for NASA.

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact

On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health.

An illustration of a spacecraft with a white disk in space.

NASA's interstellar explorer Voyager 1 is finally communicating with ground control in an understandable way again. On Saturday (April 20), Voyager 1 updated ground control about its health status for the first time in 5 months. While the Voyager 1 spacecraft still isn't sending valid science data back to Earth, it is now returning usable information about the health and operating status of its onboard engineering systems. 

Thirty-five years after its launch in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space . It was followed out of our cosmic quarters by its space-faring sibling, Voyager 2 , six years later in 2018. Voyager 2, thankfully, is still operational and communicating well with Earth. 

The two spacecraft remain the only human-made objects exploring space beyond the influence of the sun. However, on Nov. 14, 2023, after 11 years of exploring interstellar space and while sitting a staggering 15 billion miles (24 billion kilometers) from Earth, Voyager 1's binary code — computer language composed of 0s and 1s that it uses to communicate with its flight team at NASA — stopped making sense.

Related: We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

In March, NASA's Voyager 1 operating team sent a digital "poke" to the spacecraft, prompting its flight data subsystem (FDS) to send a full memory readout back home.

This memory dump revealed to scientists and engineers that the "glitch" is the result of a corrupted code contained on a single chip representing around 3% of the FDS memory. The loss of this code rendered Voyager 1's science and engineering data unusable.

People, many of whom are wearing matching blue shirts, celebrating at a conference table.

The NASA team can't physically repair or replace this chip, of course, but what they can do is remotely place the affected code elsewhere in the FDS memory. Though no single section of the memory is large enough to hold this code entirely, the team can slice it into sections and store these chunks separately. To do this, they will also have to adjust the relevant storage sections to ensure the addition of this corrupted code won't cause those areas to stop operating individually, or working together as a whole. In addition to this, NASA staff will also have to ensure any references to the corrupted code's location are updated.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

On April 18, 2024, the team began sending the code to its new location in the FDS memory. This was a painstaking process, as a radio signal takes 22.5 hours to traverse the distance between Earth and Voyager 1, and it then takes another 22.5 hours to get a signal back from the craft. 

By Saturday (April 20), however, the team confirmed their modification had worked. For the first time in five months, the scientists were able to communicate with Voyager 1 and check its health. Over the next few weeks, the team will work on adjusting the rest of the FDS software and aim to recover the regions of the system that are responsible for packaging and returning vital science data from beyond the limits of the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

SpaceX launches Falcon 9 rocket on record-tying 20th mission (video)

Boeing Starliner 1st astronaut flight: Live updates

SpaceX launching 23 Starlink satellites from Florida this evening

  • Robb62 'V'ger must contact the creator. Reply
  • Holy HannaH! Couldn't help but think that "repair" sounded extremely similar to the mechanics of DNA and the evolution of life. Reply
  • Torbjorn Larsson *Applause* indeed, thanks to the Voyager teams for the hard work! Reply
  • SpaceSpinner I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured! Reply
Admin said: On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data. NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact : Read more
evw said: I'm incredibly grateful for the persistence and dedication of the Voyagers' teams and for the amazing accomplishments that have kept these two spacecrafts operational so many years beyond their expected lifetimes. V-1 was launched when I was 25 years young; I was nearly delirious with joy. Exploring the physical universe captivated my attention while I was in elementary school and has kept me mesmerized since. I'm very emotional writing this note, thinking about what amounts to a miracle of technology and longevity in my eyes. BRAVO!!! THANK YOU EVERYONE PAST & PRESENT!!!
  • EBairead I presume it's Fortran. Well done all. Reply
SpaceSpinner said: I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured!
EBairead said: I presume it's Fortran. Well done all.
  • View All 11 Comments

Most Popular

  • 2 Russia vetoes UN resolution against nuclear weapons in space
  • 3 Beavers are helping fight climate change, satellite data shows
  • 4 Astronomers just discovered a comet that could be brighter than most stars when we see it next year. Or will it?
  • 5 This Week In Space podcast: Episode 108 — Starliner: Better Late Than Never?

neptune images voyager

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

News | August 22, 2019

30 years ago: voyager 2's historic neptune flyby.

Neptune

Thirty years ago, on Aug. 25, 1989, NASA's Voyager 2 spacecraft made a close flyby of Neptune, giving humanity its first close-up of our solar system's eighth planet. Marking the end of the Voyager mission's Grand Tour of the solar system's four giant planets - Jupiter, Saturn, Uranus and Neptune - that first was also a last: No other spacecraft has visited Neptune since.

"The Voyager planetary program really was an opportunity to show the public what science is all about," said Ed Stone, a professor of physics at Caltech and Voyager's project scientist since 1975. "Every day we learned something new."

Wrapped in teal- and cobalt-colored bands of clouds, the planet that Voyager 2 revealed looked like a blue-hued sibling to Jupiter and Saturn, the blue indicating the presence of methane. A massive, slate-colored storm was dubbed the "Great Dark Spot," similar to Jupiter's Great Red Spot. Six new moons and four rings were discovered.

Rings of Neptune

During the encounter, the engineering team carefully changed the probe's direction and speed so that it could do a close flyby of the planet's largest moon, Triton. The flyby showed evidence of geologically young surfaces and active geysers spewing material skyward. This indicated that Triton was not simply a solid ball of ice, even though it had the lowest surface temperature of any natural body observed by Voyager: minus 391 degrees Fahrenheit (minus 235 degrees Celsius).

The conclusion of the Neptune flyby marked the beginning of the Voyager Interstellar Mission, which continues today, 42 years after launch. Voyager 2 and its twin, Voyager 1 (which had also flown by Jupiter and Saturn), continue to send back dispatches from the outer reaches of our solar system. At the time of the Neptune encounter, Voyager 2 was about 2.9 billion miles (4.7 billion kilometers) from Earth; today it is 11 billion miles (18 billion kilometers) from us. The faster-moving Voyager 1 is 13 billion miles (21 billion kilometers) from Earth.   

Getting There

By the time Voyager 2 reached Neptune, the Voyager mission team had completed five planetary encounters. But the big blue planet still posed unique challenges.

About 30 times farther from the Sun than Earth is, the icy giant receives only about 0.001 times the amount of sunlight that Earth does. In such low light, Voyager 2's camera required longer exposures to get quality images. But because the spacecraft would reach a maximum speed of about 60,000 mph (90,000 kph) relative to Earth, a long exposure time would make the image blurry. (Imagine trying to take a picture of a roadside sign from the window of a speeding car.)

So the team programmed Voyager 2's thrusters to fire gently during the close approach, rotating the spacecraft to keep the camera focused on its target without interrupting the spacecraft's overall speed and direction.

The probe's great distance also meant that by the time radio signals from Voyager 2 reached Earth, they were weaker than those of other flybys. But the spacecraft had the advantage of time: The Voyagers communicate with Earth via the Deep Space Network, or DSN, which utilizes radio antennas at sites in Madrid, Spain; Canberra, Australia; and Goldstone, California. During Voyager 2's Uranus encounter in 1986, the three largest DSN antennas were 64-meters (210 feet) wide. To assist with the Neptune encounter, the DSN expanded the dishes to 70 meters (230 feet). They also included nearby non-DSN antennas to collect data, including another 64-meter (210 feet) dish in Parkes, Australia, and multiple 25-meter (82 feet) antennas at the Very Large Array in New Mexico.

The effort ensured that engineers could hear Voyager loud and clear. It also increased how much data could be sent back to Earth in a given period, enabling the spacecraft to send back more pictures from the flyby. 

Being There

In the week leading up to that August 1989 close encounter, the atmosphere was electric at NASA's Jet Propulsion Laboratory in Pasadena, California, which manages the Voyager mission. As images taken by Voyager 2 during its Neptune approach made the four-hour journey to Earth, Voyager team members would crowd around computer monitors around the Lab to see.

"One of the things that made the Voyager planetary encounters different from missions today is that there was no internet that would have allowed the whole team and the whole world to see the pictures at the same time," Stone said. "The images were available in real time at a limited number of locations."

But the team was committed to giving the public updates as quickly as possible, so from Aug. 21 to Aug. 29, they would share their discoveries with the world during daily press conferences. On Aug. 24, a program called "Voyager All Night" broadcast regular updates from the probe's closest encounter with the planet, which took place at 4 a.m. GMT (9 p.m. in California on Aug. 24).

The next morning, Vice President Dan Quayle visited the Lab to commend the Voyager team. That night, Chuck Berry, whose song "Johnny B. Goode" was included on the Golden Record that flew with both Voyagers, played at JPL's celebration of the feat.

Chuck Berry (left) and Carl Sagan (right)

Of course, the Voyagers' achievements extend far beyond that historic week three decades ago. Both probes have now entered interstellar space after exiting the heliosphere - the protective bubble around the planets created by a high-speed flow of particles and magnetic fields spewed outward by our Sun.

They are reporting back to Earth on the "weather" and conditions from this region filled with the debris from stars that exploded elsewhere in our galaxy. They have taken humanity's first tenuous step into the cosmic ocean where no other operating probes have flown.

Voyager data also complement other missions, including NASA's Interstellar Boundary Explorer ( IBEX ), which is remotely sensing that boundary where particles from our Sun collide with material from the rest of the galaxy. And NASA is preparing the Interstellar Mapping and Acceleration Probe ( IMAP ), due to launch in 2024, to capitalize on Voyager observations.

The Voyagers send their findings back to DSN antennas with 13-watt transmitters - about enough power to run a refrigerator light bulb.

"Every day they travel somewhere that human probes have never been before," said Stone. "Forty-two years after launch, and they're still exploring."

For more information about the Voyager mission visit:

https://www.nasa.gov/voyager

https://voyager.jpl.nasa.gov

For more images of Neptune taken by Voyager 2 visit:

https://voyager.jpl.nasa.gov/galleries/images-voyager-took/neptune/

News Media Contact

Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 [email protected]

News Release: 2019-169

  • International edition
  • Australia edition
  • Europe edition

Nasa depiction of Voyager 1 operating in space

Voyager 1 transmitting data again after Nasa remotely fixes 46-year-old probe

Engineers spent months working to repair link with Earth’s most distant spacecraft, says space agency

Earth’s most distant spacecraft, Voyager 1, has started communicating properly again with Nasa after engineers worked for months to remotely fix the 46-year-old probe.

Nasa’s Jet Propulsion Laboratory (JPL), which makes and operates the agency’s robotic spacecraft, said in December that the probe – more than 15bn miles (24bn kilometres) away – was sending gibberish code back to Earth.

In an update released on Monday , JPL announced the mission team had managed “after some inventive sleuthing” to receive usable data about the health and status of Voyager 1’s engineering systems. “The next step is to enable the spacecraft to begin returning science data again,” JPL said. Despite the fault, Voyager 1 had operated normally throughout, it added.

Launched in 1977, Voyager 1 was designed with the primary goal of conducting close-up studies of Jupiter and Saturn in a five-year mission. However, its journey continued and the spacecraft is now approaching a half-century in operation.

Voyager 1 crossed into interstellar space in August 2012, making it the first human-made object to venture out of the solar system. It is currently travelling at 37,800mph (60,821km/h).

Hi, it's me. - V1 https://t.co/jgGFBfxIOe — NASA Voyager (@NASAVoyager) April 22, 2024

The recent problem was related to one of the spacecraft’s three onboard computers, which are responsible for packaging the science and engineering data before it is sent to Earth. Unable to repair a broken chip, the JPL team decided to move the corrupted code elsewhere, a tricky job considering the old technology.

The computers on Voyager 1 and its sister probe, Voyager 2, have less than 70 kilobytes of memory in total – the equivalent of a low-resolution computer image. They use old-fashioned digital tape to record data.

The fix was transmitted from Earth on 18 April but it took two days to assess if it had been successful as a radio signal takes about 22 and a half hours to reach Voyager 1 and another 22 and a half hours for a response to come back to Earth. “When the mission flight team heard back from the spacecraft on 20 April, they saw that the modification worked,” JPL said.

Alongside its announcement, JPL posted a photo of members of the Voyager flight team cheering and clapping in a conference room after receiving usable data again, with laptops, notebooks and doughnuts on the table in front of them.

The Retired Canadian astronaut Chris Hadfield, who flew two space shuttle missions and acted as commander of the International Space Station, compared the JPL mission to long-distance maintenance on a vintage car.

“Imagine a computer chip fails in your 1977 vehicle. Now imagine it’s in interstellar space, 15bn miles away,” Hadfield wrote on X . “Nasa’s Voyager probe just got fixed by this team of brilliant software mechanics.

Voyager 1 and 2 have made numerous scientific discoveries , including taking detailed recordings of Saturn and revealing that Jupiter also has rings, as well as active volcanism on one of its moons, Io. The probes later discovered 23 new moons around the outer planets.

As their trajectory takes them so far from the sun, the Voyager probes are unable to use solar panels, instead converting the heat produced from the natural radioactive decay of plutonium into electricity to power the spacecraft’s systems.

Nasa hopes to continue to collect data from the two Voyager spacecraft for several more years but engineers expect the probes will be too far out of range to communicate in about a decade, depending on how much power they can generate. Voyager 2 is slightly behind its twin and is moving slightly slower.

In roughly 40,000 years, the probes will pass relatively close, in astronomical terms, to two stars. Voyager 1 will come within 1.7 light years of a star in the constellation Ursa Minor, while Voyager 2 will come within a similar distance of a star called Ross 248 in the constellation of Andromeda.

More on this story

neptune images voyager

Cosmic cleaners: the scientists scouring English cathedral roofs for space dust

neptune images voyager

Russia acknowledges continuing air leak from its segment of space station

neptune images voyager

Uncontrolled European satellite falls to Earth after 30 years in orbit

neptune images voyager

Cosmonaut Oleg Kononenko sets world record for most time spent in space

neptune images voyager

‘Old smokers’: astronomers discover giant ancient stars in Milky Way

neptune images voyager

Nasa postpones plans to send humans to moon

neptune images voyager

What happened to the Peregrine lander and what does it mean for moon missions?

neptune images voyager

Peregrine 1 has ‘no chance’ of landing on moon due to fuel leak

Most viewed.

IMAGES

  1. Voyager 2 Image Of The Planet Neptune #1 Photograph by Nasa

    neptune images voyager

  2. Voyager 2 Image Of The Planet Neptune Photograph by Nasa

    neptune images voyager

  3. Voyager 2 Image Of Neptune Photograph by Nasa

    neptune images voyager

  4. Best-ever Neptune mosaics for the 25th anniversary of Voyager 2's flyby

    neptune images voyager

  5. Aug. 25, 1989: Voyager 2, Meet Neptune

    neptune images voyager

  6. Voyager 2 view of Neptune

    neptune images voyager

VIDEO

  1. Voyager Neptune Mission #astronomy #shorts

  2. Voyager Neptune encounter #astronomy #shorts

  3. Neptune's Blue Color if FAKE! #shorts #neptune #spacefacts

  4. Voyager’s 2 Neptune Footage from 1989

  5. Unveiling Neptune's True Colors Enhancing the Blue Beauty of Our Solar System

  6. NASA captures clearest view of Neptune in more than 30 years

COMMENTS

  1. Voyager

    Images Voyager Took of Neptune. In the summer of 1989, NASA's Voyager 2 became the first spacecraft to observe the planet Neptune, its final planetary target. Passing about 4,950 kilometers (3,000 miles) above Neptune's north pole, Voyager 2 made its closest approach to any planet since leaving Earth 12 years ago.

  2. Voyager

    Galleries of Images Voyager Took. The Voyager 1 and 2 spacecraft explored Jupiter, Saturn, Uranus and Neptune before starting their journey toward interstellar space. ... Passing about 4,950 kilometers (3,000 miles) above Neptune's north pole, Voyager 2 made its closest approach to any planet since leaving Earth 12 years ago. Five hours later ...

  3. 30 Years Ago: Voyager 2's Historic Neptune Flyby

    Voyager 2 took these two images of the rings of Neptune on Aug. 26, 1989, just after the probe's closest approach to the planet. Neptune's two main rings are clearly visible; two fainter rings are visible with the help of long exposure times and backlighting from the Sun.

  4. 25 Years Ago, Voyager 2 Captures Images of Neptune

    This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on the Voyager 2 narrow angle camera. The images were taken on Aug. 20, 1989, at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach on Aug. 25. The picture shows the Great Dark Spot and its ...

  5. Neptune

    Neptune. Aug. 18, 1999. These pictures of Neptune were obtained by Voyager 2 on April 26,1989, at a distance of 176 million kilometers (109 million miles). At the center of the Neptune disc, each pixel covers a square 4 degrees by 4 degrees in latitude. (Each Voyager image contains 800 pixels, picture elements, per line and 800 lines.)

  6. Neptune Full Disk View

    Neptune Full Disk View. Oct. 30, 1998. This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on the Voyager 2 narrow angle camera. The images were taken at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach. The picture shows the Great Dark Spot ...

  7. Neptune

    It was produced from images taken through the orange, green and violet filters of Voyager's narrow angle camera. As Voyager 2 approaches Neptune, rapidly increasing image resolution is revealing striking new details in the planet's atmosphere, and this picture shows features as small as a few hundred kilometers in extent.

  8. Images taken by the Voyager 2 Spacecraft

    Neptune: Voyager: 2188x2185x3: PIA01492: Neptune Full Disk View Full Resolution: TIFF (8.758 MB) JPEG (259 kB) 1998-10-30: Neptune: Voyager: 1469x1160x1: PIA01493: Neptune's Rings Full Resolution: ... Currently displaying images: ...

  9. When Neptune got its stunning close-up: The Voyager 2 flyby, 30 years

    Thirty years ago, NASA's Voyager 2 mission flew by Neptune, capturing the first close-up images of the blue gas giant. Before this, the eighth planet in our solar system was only known as a ...

  10. Voyager 2

    To observe Triton, Voyager 2 passed over Neptune's north pole, resulting in an acceleration out of the plane of the ecliptic, and, as a result, a reduced velocity relative to the Sun. ... Detailed images from Voyager 2 ' s flyby of the Uranian moon Miranda showed huge canyons made from geological faults.

  11. New images reveal what Neptune and Uranus really look like

    In addition, the early Neptune images from Voyager 2 were strongly contrast enhanced to better reveal the clouds, bands, and winds that shape our modern perspective of Neptune. Professor Irwin said: 'Although the familiar Voyager 2 images of Uranus were published in a form closer to "true" colour, those of Neptune were, in fact, stretched ...

  12. Neptune from Voyager

    Neptune from Voyager This new view of Neptune was created from images captured by Voyager 2 as it approached the planet at a range of more than 10 million kilometers on August 17, 1989. It was processed to present Neptune in approximately true color. The processing was complicated by the fact that 18 minutes separated the acquisition of orange, green, and violet frames, since Voyager 2 was ...

  13. Inside NASA's monthslong effort to rescue the Voyager 1 mission

    The Voyager 1 probe is the most distant human-made object in existence. ... Uranus and Neptune and continues to operate as normal. In 2012, Voyager ... The disks contain images and sounds that ...

  14. 30 Years Ago: Voyager 2 Explores Neptune

    Voyager returned the first images of Neptune's rings which turned out to be a system of five rings composed mostly of dark dust and discovered two more small moons (Thalassa and Naiad). Like at Saturn and Uranus, the rings and four of the moons at Neptune form an intricate interrelated system. The spacecraft also imaged Neptune's previously ...

  15. Voyager 1 regains communications with NASA after inventive fix

    CNN —. For the first time in five months, NASA engineers have received decipherable data from Voyager 1 after crafting a creative solution to fix a communication problem aboard humanity's most ...

  16. Voyager 1: Contact restored with distant space probe, NASA says

    Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune. More:NASA gave Voyager 1 a 'poke' amid communication woes ...

  17. Voyager at Neptune

    Voyager. Earth Observer. James Webb Space Telescope - Science images. Hubble Space Telescope. In the summer of 1989, NASA's Voyager 2 became the first spacecraft to observe the planet Neptune up close, its final planetary target.

  18. Rejoice! Voyager 1 is back from the dead

    This "grand tour" rewrote planetary textbooks, furnishing new images and measurements of the outer planets, many moons and their associated magnetic fields. Voyager 1 left the solar system in ...

  19. NASA Celebrates As 1977's Voyager 1 Phones Home At Last

    Beyond The 'Heliopause'. The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little ...

  20. NASA's Voyager 1 sending readable data back to Earth for 1st time in 5

    MORE: NASA asks for help studying Uranus and Neptune as it prepares to capture new images. ... When the team heard from Voyager 1 on April 20, they knew the fix was a success, the JPL said. ...

  21. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    Voyager 2 continues to operate normally. Launched over 46 years ago, the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune. Caltech in Pasadena, California, manages JPL for NASA.

  22. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data.

  23. Voyager

    Voyager 2 took these two images of the rings of Neptune on Aug. 26, 1989, just after the probe's closest approach to the planet. Neptune's two main rings are clearly visible; two fainter rings are visible with the help of long exposure times and backlighting from the Sun. Credit: NASA/JPL-Caltech Full image and caption

  24. Voyager 1 transmitting data again after Nasa remotely fixes 46-year-old

    Tue 23 Apr 2024 07.53 EDT. Earth's most distant spacecraft, Voyager 1, has started communicating properly again with Nasa after engineers worked for months to remotely fix the 46-year-old probe ...