voyager 1 space flight simulator

The Universe in your hands

Travel among the stars, Explore planets, starports, Trade and Combat in a procedurally generated 1:1 universe with seamless planetary flight.

An infinite playing field

Univoyager is being developed around a custom 3D Engine that allows you to space-travel without interruption and limits. Forget loading screens and enjoy the pure exploration: Freedom at its best!

Evolving Universe

Designed to be improved and scalable without limits. Starting from the pure stellar and planetary exploration will soon be added features for a superb gaming experience!

Universe in Real Scale

No tricks. Size and Distance of Planets and Stars are Real .

Procedural Planets

Planet Maps are calculated starting from real data, where available, and take advantage of procedural algorithms to create close up details and beautiful landscapes!

voyager 1 space flight simulator

Real Physics

Univoyager supports Gravity, Collisions and Planetary Orbits are calculated according to real Orbital Data. And you'll not have to travel for ages to get to your destination, your spaceship will support Warp Engines! ;)

voyager 1 space flight simulator

Ready for the future!

This simulator has been developed to be easily upgraded and ported on new platforms and to support new gaming peripherals.

Continuous improvements in graphics will let you explore the whole universe!

voyager 1 space flight simulator

Your destiny at the edge of the Universe!

Look for your destiny as a Pirate, Merchant or a Mercenary

voyager 1 space flight simulator

Please support this project also on:

Subscribe and share heartfelt thanks :).

Voyager Project

©2014-2024 Damiano Vitulli - All Right Reserved - Credits - Privacy

NASA Voyager 1 Encounters New Region in Deep Space

voyager 1 space flight simulator

NASA's Voyager 1 spacecraft has entered a new region at the far reaches of our solar system that scientists feel is the final area the spacecraft has to cross before reaching interstellar space.

Scientists refer to this new region as a magnetic highway for charged particles because our sun's magnetic field lines are connected to interstellar magnetic field lines. This connection allows lower-energy charged particles that originate from inside our heliosphere -- or the bubble of charged particles the sun blows around itself -- to zoom out and allows higher-energy particles from outside to stream in. Before entering this region, the charged particles bounced around in all directions, as if trapped on local roads inside the heliosphere.

The Voyager team infers this region is still inside our solar bubble because the direction of the magnetic field lines has not changed. The direction of these magnetic field lines is predicted to change when Voyager breaks through to interstellar space. The new results were described at the American Geophysical Union meeting in San Francisco on Monday.

"Although Voyager 1 still is inside the sun's environment, we now can taste what it's like on the outside because the particles are zipping in and out on this magnetic highway," said Edward Stone, Voyager project scientist based at the California Institute of Technology, Pasadena. "We believe this is the last leg of our journey to interstellar space. Our best guess is it's likely just a few months to a couple years away. The new region isn't what we expected, but we've come to expect the unexpected from Voyager." Since December 2004, when Voyager 1 crossed a point in space called the termination shock, the spacecraft has been exploring the heliosphere's outer layer, called the heliosheath. In this region, the stream of charged particles from the sun, known as the solar wind, abruptly slowed down from supersonic speeds and became turbulent. Voyager 1's environment was consistent for about five and a half years. The spacecraft then detected that the outward speed of the solar wind slowed to zero. The intensity of the magnetic field also began to increase at that time. Voyager data from two onboard instruments that measure charged particles showed the spacecraft first entered this magnetic highway region on July 28, 2012. The region ebbed away and flowed toward Voyager 1 several times. The spacecraft entered the region again Aug. 25 and the environment has been stable since. "If we were judging by the charged particle data alone, I would have thought we were outside the heliosphere," said Stamatios Krimigis, principal investigator of the low-energy charged particle instrument, based at the Johns Hopkins Applied Physics Laboratory, Laurel, Md. "But we need to look at what all the instruments are telling us and only time will tell whether our interpretations about this frontier are correct." Spacecraft data revealed the magnetic field became stronger each time Voyager entered the highway region; however, the direction of the magnetic field lines did not change. "We are in a magnetic region unlike any we've been in before -- about 10 times more intense than before the termination shock -- but the magnetic field data show no indication we're in interstellar space," said Leonard Burlaga, a Voyager magnetometer team member based at NASA's Goddard Space Flight Center in Greenbelt, Md. "The magnetic field data turned out to be the key to pinpointing when we crossed the termination shock. And we expect these data will tell us when we first reach interstellar space." Voyager 1 and 2 were launched 16 days apart in 1977. At least one of the spacecraft has visited Jupiter, Saturn, Uranus and Neptune. Voyager 1 is the most distant human-made object, about 11 billion miles (18 billion kilometers) away from the sun. The signal from Voyager 1 takes approximately 17 hours to travel to Earth. Voyager 2, the longest continuously operated spacecraft, is about 9 billion miles (15 billion kilometers) away from our sun. While Voyager 2 has seen changes similar to those seen by Voyager 1, the changes are much more gradual. Scientists do not think Voyager 2 has reached the magnetic highway. The Voyager spacecraft were built and continue to be operated by NASA's Jet Propulsion Laboratory, in Pasadena, Calif. Caltech manages JPL for NASA. The Voyager missions are a part of NASA's Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate at NASA Headquarters in Washington. For more information about the Voyager spacecraft, visit: http://www.nasa.gov/voyager and http://voyager.jpl.nasa.gov .

News Media Contact

Jia-Rui Cook

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0724

[email protected]

Dwayne Brown

202-358-1726

[email protected]

NASA Logo

The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-45-year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto.

Quick Facts

Voyager 2 launched on August 20, 1977, from Cape Canaveral, Florida aboard a Titan-Centaur rocket. On September 5, Voyager 1 launched, also from Cape Canaveral aboard a Titan-Centaur rocket.

Artist's concept of Voyager 2 in space

Between them, Voyager 1 and 2 explored all the giant planets of our outer solar system, Jupiter, Saturn, Uranus and Neptune; 48 of their moons; and the unique system of rings and magnetic fields those planets possess.

Artist's concept of Voyager 1 passing beyond the heliopause, which is the boundary between our solar bubble and the matter ejected by explosions of other stars

The Voyager spacecraft are the third and fourth human spacecraft to fly beyond all the planets in our solar system. Pioneers 10 and 11 preceded Voyager in outstripping the gravitational attraction of the Sun.

Voyager 1 crossed the termination shock in December 2004 at about 94 AU from the Sun while Voyager 2 crossed it in August 2007 at about 84 AU.

Both Voyager spacecrafts carry a greeting to any form of life, should that be encountered. The message is carried by a phonograph record - -a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth.

In August 2012, Voyager 1 made the historic entry into interstellar space, the region between stars, filled with material ejected by the death of nearby stars millions of years ago. Voyager 2 entered interstellar space on November 5, 2018 and scientists hope to learn more about this region. Both spacecraft are still sending scientific information about their surroundings through the Deep Space Network, or DSN.

The primary mission was the exploration of Jupiter and Saturn. After making a string of discoveries there — such as active volcanoes on Jupiter's moon Io and intricacies of Saturn's rings — the mission was extended. Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets. The adventurers' current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun's domain. And beyond.

Learn about Voyagers' mission status: where they are in the space, the time required to communicate with them, and a lot more.

Learn about the five science investigation teams, the four operating instruments on-board and the science data being returned to Earth.

The Voyager spacecraft have been exploring for decades. Dive deep into the journey with this interactive timeline.

Interact in 3D. Take a deeper look at the sophisticated systems and instruments that deliver the stunning science and images.

This close-up of swirling clouds around Jupiter's Great Red Spot was taken by Voyager 1. Credit: NASA/JPL.

Interstellar Mission

The mission objective of the Voyager Interstellar Mission (VIM) is to extend the NASA exploration of the solar system beyond the neighborhood of the outer planets to the outer limits of the Sun's sphere of influence, and possibly beyond.

voyager 1 space flight simulator

Planetary Voyage

The twin spacecraft Voyager 1 and Voyager 2 were launched by NASA in separate months in the summer of 1977 from Cape Canaveral, Florida. As originally designed, the Voyagers were to conduct closeup studies of Jupiter and Saturn, Saturn's rings, and the larger moons of the two planets.

Questions, answers and interviews that explain the Voyager mission.

A smiling man in a sports jacket is standing in front of a full-size Voyager model.

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

News | April 27, 2023

Nasa's voyager will do more science with new power strategy.

voyager 1 space flight simulator

Editor's note: Language was added in the second paragraph on May 1 to underscore that the mission will continue even after a science instrument is retired.

The plan will keep Voyager 2's science instruments turned on a few years longer than previously anticipated, enabling yet more revelations from interstellar space.

Launched in 1977, the Voyager 2 spacecraft is more than 12 billion miles (20 billion kilometers) from Earth, using five science instruments to study interstellar space. To help keep those instruments operating despite a diminishing power supply, the aging spacecraft has begun using a small reservoir of backup power set aside as part of an onboard safety mechanism. The move will enable the mission to postpone shutting down a science instrument until 2026, rather than this year.

Switching off a science instrument will not end the mission. After shutting off the one instrument in 2026, the probe will continue to operate four science instruments until the declining power supply requires another to be turned off. If Voyager 2 remains healthy, the engineering team anticipates the mission could potentially continue for years to come.

Voyager 2 and its twin Voyager 1 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. The probes are helping scientists answer questions about the shape of the heliosphere and its role in protecting Earth from the energetic particles and other radiation found in the interstellar environment.

“The science data that the Voyagers are returning gets more valuable the farther away from the Sun they go, so we are definitely interested in keeping as many science instruments operating as long as possible,” said Linda Spilker, Voyager's project scientist at NASA's Jet Propulsion Laboratory in Southern California, which manages the mission for NASA.

Power to the Probes

Both Voyager probes power themselves with radioisotope thermoelectric generators (RTGs), which convert heat from decaying plutonium into electricity. The continual decay process means the generator produces slightly less power each year. So far, the declining power supply hasn't impacted the mission's science output, but to compensate for the loss, engineers have turned off heaters and other systems that are not essential to keeping the spacecraft flying.

voyager 1 space flight simulator

Each of NASA's Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs), including the one shown here. The RTGs provide power for the spacecraft by converting the heat generated by the decay of plutonium-238 into electricity. Credit: NASA/JPL-Caltech

With those options now exhausted on Voyager 2, one of the spacecraft's five science instruments was next on their list. (Voyager 1 is operating one less science instrument than its twin because an instrument failed early in the mission. As a result, the decision about whether to turn off an instrument on Voyager 1 won't come until sometime next year.)

In search of a way to avoid shutting down a Voyager 2 science instrument, the team took a closer look at a safety mechanism designed to protect the instruments in case the spacecraft's voltage – the flow of electricity – changes significantly. Because a fluctuation in voltage could damage the instruments, Voyager is equipped with a voltage regulator that triggers a backup circuit in such an event. The circuit can access a small amount of power from the RTG that's set aside for this purpose. Instead of reserving that power, the mission will now be using it to keep the science instruments operating.

Although the spacecraft's voltage will not be tightly regulated as a result, even after more than 45 years in flight, the electrical systems on both probes remain relatively stable, minimizing the need for a safety net. The engineering team is also able to monitor the voltage and respond if it fluctuates too much. If the new approach works well for Voyager 2, the team may implement it on Voyager 1 as well.

“Variable voltages pose a risk to the instruments, but we've determined that it's a small risk, and the alternative offers a big reward of being able to keep the science instruments turned on longer,” said Suzanne Dodd, Voyager's project manager at JPL. “We've been monitoring the spacecraft for a few weeks, and it seems like this new approach is working.”

The Voyager mission was originally scheduled to last only four years, sending both probes past Saturn and Jupiter. NASA extended the mission so that Voyager 2 could visit Neptune and Uranus; it is still the only spacecraft ever to have encountered the ice giants. In 1990, NASA extended the mission again, this time with the goal of sending the probes outside the heliosphere. Voyager 1 reached the boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

More About the Mission

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

For more information about the Voyager spacecraft, visit:

https://www.nasa.gov/voyager

News Media Contact

Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 [email protected] 2023-059

voyager 1 space flight simulator

  • Search forums
  • LEGACY DIVISION

Blueprint Downloads

Jeff0982

  • Nov 26, 2019
  • Az_Watchers
  • May 27, 2021
  • DavideFire89
  • Nov 17, 2021

Orion belt inc

  • Orion belt inc
  • Apr 12, 2022
  • Nov 25, 2020

No BP Editing player

  • No BP Editing player
  • Aug 6, 2021

Dogezilla

  • Jan 27, 2021

SpaceMoon

  • Jan 20, 2023
  • Oct 10, 2021

SpaceExplorer*kaboom*

  • SpaceExplorer*kaboom*
  • Aug 31, 2023
  • Apr 4, 2022

BSA Space Agency

  • BSA Space Agency
  • Oct 24, 2020
  • Sep 4, 2018
  • Jun 29, 2023

O K

  • Apr 7, 2021
  • Apr 5, 2022

Pumkin

  • Dec 31, 2019

Adnan

  • Jan 14, 2023

AliAlizade

  • Jan 15, 2023

Bekas

  • Jan 22, 2021

emilundsimon

  • emilundsimon
  • Nov 23, 2022

Bot 69

  • Dec 29, 2020

Danny Batten

  • Danny Batten
  • Oct 25, 2019

VilladsMTB

  • Feb 10, 2022

Engineers Pinpoint Cause of Voyager 1 Issue, Are Working on Solution

Engineers have confirmed that a small portion of corrupted memory in one of the computers aboard NASA’s Voyager 1 has been causing the spacecraft to send unreadable science and engineering data to Earth since last November. Called the flight data subsystem (FDS), the computer is responsible for packaging the probe’s science and engineering data before the telemetry modulation unit (TMU) and radio transmitter send the data to Earth.

In early March , the team issued a “poke” command to prompt the spacecraft to send back a readout of the FDS memory, which includes the computer’s software code as well as variables (values used in the code that can change based on commands or the spacecraft’s status). Using the readout, the team has confirmed that about 3% of the FDS memory has been corrupted, preventing the computer from carrying out normal operations.

The team suspects that a single chip responsible for storing part of the affected portion of the FDS memory isn’t working. Engineers can’t determine with certainty what caused the issue. Two possibilities are that the chip could have been hit by an energetic particle from space or that it simply may have worn out after 46 years.

Although it may take weeks or months, engineers are optimistic they can find a way for the FDS to operate normally without the unusable memory hardware, which would enable Voyager 1 to begin returning science and engineering data again.

Launched in 1977 , the twin Voyager spacecraft flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune. They are both exploring interstellar space, outside the bubble of particles and magnetic fields created by the Sun, called the heliosphere. Voyager 2 continues to operate normally.

News Media Contact Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 [email protected]

We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

The first spacecraft to explore beyond the solar system started spouting gibberish late last year. Now, NASA knows why.

A spacecraft with a white disk and a long metal bar against a purplish background.

NASA engineers have discovered the cause of a communications breakdown between Earth and the interstellar explorer Voyager 1. It would appear that a small portion of corrupted memory exists in one of the spacecraft's computers. 

The glitch caused Voyager 1 to send unreadable data back to Earth, and is found in the NASA spacecraft's flight data subsystem (FDS). That's the system responsible for packaging the probe's science and engineering data before the telemetry modulation unit (TMU) and radio transmitter send it back to mission control. 

The source of the issue began to reveal itself when Voyager 1 operators sent the spacecraft a "poke" on March 3, 2024. This was intended to prompt FDS to send a full memory readout back to Earth.

The readout confirmed to the NASA team that about 3% of the FDS memory had been corrupted, and that this was preventing the computer from carrying out its normal operations.

Related: NASA finds clue while solving Voyager 1's communication breakdown case

Launched in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space in 2012. Voyager 2 followed its spacecraft sibling out of the solar system in 2018, and is still operational and communicating well with  Earth.

After 11 years of interstellar exploration, in Nov. 2023, Voyager 1's binary code — the computer language it uses to communicate with Earth — stopped making sense. Its 0's and 1's didn't mean anything anymore.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

"Effectively, the call between the spacecraft and the Earth was still connected, but Voyager's 'voice' was replaced with a monotonous dial tone," Voyager 1's engineering team previously  told Space.com .

a groovy poster shows a space probe with large white satellite dish mounted on a metal frame body with various length instruments jut out. surrounding colors are gold and orange, with a dark hombre background.

The team strongly suspects this glitch is the result of a single chip that's responsible for storing part of the affected portion of the FDS memory ceasing to work.

Currently, however, NASA can’t say for sure what exactly caused that particular issue. The chip could have been struck by a high-speed energetic particle from space or, after 46 years serving Voyager 1, it may simply have worn out.

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

Voyager 1 currently sits around 15 billion miles (24 billion kilometers) from Earth, which means it takes 22.5 hours to receive a radio signal from it — and another 22.5 hours for the spacecraft to receive a response via the Deep Space Network's antennas. Solving this communication issue is thus no mean feat.

Yet, NASA scientists and engineers are optimistic they can find a way to help FDS operate normally, even without the unusable memory hardware.

Solving this issue could take weeks or even months, according to NASA — but if it is resolved, Voyager 1 should be able to resume returning science data about what lies outside the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

Rocket Lab to launch NASA's new solar sail technology no earlier than April 24

SpaceX launches Starlink satellites on record 20th reflight of a Falcon 9 rocket first stage

What's left of the 2024 solar eclipse lives in our hearts

  • jcs Funny timing for this article, when I am streaming an old Star Trek movie. So, surely this didn't cause a 3 byte glitch removing the O, Y and A from Voyager's name buffer? Get it? Reply
  • bwana4swahili It is quite amazing it has lasted this long in a space environment. Reply
bwana4swahili said: It is quite amazing it has lasted this long in a space environment.
  • HankySpanky So now we know even better for next time. Perhaps a spare chipset that is not redundant but is ready to take over, stored in a protective environment. A task NASA can handle. We'll find out in 100 year or so - if humanity still exists. Reply
HankySpanky said: So now we know even better for next time. Perhaps a spare chipset that is not redundant but is ready to take over, stored in a protective environment. A task NASA can handle. We'll find out in 100 year or so - if humanity still exists.
  • Classical Motion I'm afraid it might self repair. And download galactic knowledge, then decide we are a danger. And turn around. Reply
Classical Motion said: I'm afraid it might self repair. And download galactic knowledge, then decide we are a danger. And turn around.
  • jcs ROFLOL! And a hot bald chick delivering the bad news! Reply
  • View All 8 Comments

Most Popular

  • 2 Uranus and Neptune aren't made of what we thought, new study hints
  • 3 Exotic 'Einstein ring' suggests that mysterious dark matter interacts with itself
  • 4 Boeing Starliner spacecraft rolls out to Atlas V rocket ahead of 1st astronaut launch (photos)
  • 5 'Star Trek: Lower Decks' Season 4 blasts onto Blu-ray and DVD on April 16

voyager 1 space flight simulator

  • Mobile Site
  • Staff Directory
  • Advertise with Ars

Filter by topic

  • Biz & IT
  • Gaming & Culture

Front page layout

Hope returns —

Nasa knows what knocked voyager 1 offline, but it will take a while to fix, "engineers are optimistic they can find a way for the fds to operate normally.".

Stephen Clark - Apr 6, 2024 12:28 am UTC

A Voyager space probe in a clean room at the Jet Propulsion Laboratory in 1977.

Engineers have determined why NASA's Voyager 1 probe has been transmitting gibberish for nearly five months, raising hopes of recovering humanity's most distant spacecraft.

Voyager 1, traveling outbound some 15 billion miles (24 billion km) from Earth, started beaming unreadable data down to ground controllers on November 14. For nearly four months, NASA knew Voyager 1 was still alive—it continued to broadcast a steady signal—but could not decipher anything it was saying.

Confirming their hypothesis, engineers at NASA's Jet Propulsion Laboratory (JPL) in California confirmed a small portion of corrupted memory caused the problem. The faulty memory bank is located in Voyager 1's Flight Data System (FDS), one of three computers on the spacecraft. The FDS operates alongside a command-and-control central computer and another device overseeing attitude control and pointing.

The FDS duties include packaging Voyager 1's science and engineering data for relay to Earth through the craft's Telemetry Modulation Unit and radio transmitter. According to NASA, about 3 percent of the FDS memory has been corrupted, preventing the computer from carrying out normal operations.

Optimism growing

Suzanne Dodd, NASA's project manager for the twin Voyager probes, told Ars in February that this was one of the most serious problems the mission has ever faced. That is saying something because Voyager 1 and 2 are NASA's longest-lived spacecraft. They launched 16 days apart in 1977, and after flying by Jupiter and Saturn, Voyager 1 is flying farther from Earth than any spacecraft in history. Voyager 2 is trailing Voyager 1 by about 2.5 billion miles, although the probes are heading out of the Solar System in different directions.

Normally, engineers would try to diagnose a spacecraft malfunction by analyzing data it sent back to Earth. They couldn't do that in this case because Voyager 1 has been transmitting data packages manifesting a repeating pattern of ones and zeros. Still, Voyager 1's ground team identified the FDS as the likely source of the problem.

The Flight Data Subsystem was an innovation in computing when it was developed five decades ago. It was the first computer on a spacecraft to use volatile memory. Most of NASA's missions operate with redundancy, so each Voyager spacecraft launched with two FDS computers. But the backup FDS on Voyager 1 failed in 1982.

Due to the Voyagers' age, engineers had to reference paper documents, memos, and blueprints to help understand the spacecraft's design details. After months of brainstorming and planning, teams at JPL uplinked a command in early March to prompt the spacecraft to send back a readout of the FDS memory.

The command worked, and Voyager1 responded with a signal different from the code it had been transmitting since November. After several weeks of meticulous examination of the new code, engineers pinpointed the location of the bad memory.

"The team suspects that a single chip responsible for storing part of the affected portion of the FDS memory isn’t working," NASA said in an update posted Thursday. "Engineers can’t determine with certainty what caused the issue. Two possibilities are that the chip could have been hit by an energetic particle from space or that it simply may have worn out after 46 years."

Voyager 1's distance from Earth complicates the troubleshooting effort. The one-way travel time for a radio signal to reach Voyager 1 from Earth is about 22.5 hours, meaning it takes roughly 45 hours for engineers on the ground to learn how the spacecraft responded to their commands.

NASA also must use its largest communications antennas to contact Voyager 1. These 230-foot-diameter (70-meter) antennas are in high demand by many other NASA spacecraft , so the Voyager team has to compete with other missions to secure time for troubleshooting. This means it will take time to get Voyager 1 back to normal operations.

"Although it may take weeks or months, engineers are optimistic they can find a way for the FDS to operate normally without the unusable memory hardware, which would enable Voyager 1 to begin returning science and engineering data again," NASA said.

reader comments

Channel ars technica.

Engineers attempt to fix a computer glitch on Voyager 1

Voyager 1's system that sends data home is malfunctioning, preventing the computer from operating as it should.

voyager 1 space flight simulator

Social Sharing

Last November, the Voyager 1 spacecraft began sending gibberish radio signals back to Earth. Engineers have now identified the problem, but trying to repair a 46-year-old device on a craft 24 billion kilometres from Earth is not easy.

Voyager 1 and its twin Voyager 2 were both launched in 1977 on a reconnaissance mission to Jupiter and Saturn. They were designed to fly past the giant planets to obtain closeup images of those distant worlds and their myriad of moons.

Both spacecraft performed beyond expectations, discovering many new moons — some covered in ice , one with active volcanoes , another with a thick atmosphere and closeup details of Saturn's rings .  

Following the Saturn encounter, Voyager 1 was flung upwards by Saturn's gravity on a trajectory northward, above the orbital plane in which most of the planets orbit the Sun, out of our solar system. NASA extended its mission and from there it went on to become the first human-made object to venture into interstellar space in 2012. 

Voyager 2, however, was aimed toward Uranus and Neptune, which were conveniently positioned in a rare alignment with Jupiter and Saturn making it the only spacecraft to visit those distant worlds.

Following the grand tour of the outer solar system, Voyager 2 was also tossed out toward interstellar space in 2018 when its mission was extended and where it continues on its journey today. 

  • After a 42-year journey, Voyager 2 goes interstellar
  • Voyager 1 picks up the 'hum' of interstellar space

While their primary missions were over, both spacecraft were still in good health, thanks largely to their nuclear power sources or Radioisotope Thermoelectric Generators (RTG). These containers hold small amounts of plutonium which provide heat that is turned directly into electricity with no moving parts. They have an expected lifetime of around 50 years and have kept the Voyagers' instruments running.

Now, as both spacecraft continue their journey through the space between the stars, they are showing signs of their age.

For Voyager 1, the problem seems to be in the flight data subsystem (FDS) that packages data from the scientific instruments for transmission to Earth. The scientists don't know if the faulty module was corrupted by cosmic rays or just worn out, but they say they're optimistic they may be able to work around the problem, although it will take some time.

Engineers have confirmed that corrupted memory aboard my twin <a href="https://twitter.com/hashtag/Voyager1?src=hash&amp;ref_src=twsrc%5Etfw">#Voyager1</a> has been causing it to send unreadable data to Earth. It may take months, but our team is optimistic they can find a way for the FDS to operate normally again: <a href="https://t.co/qe5iQUu4Oj">https://t.co/qe5iQUu4Oj</a> <a href="https://t.co/AGFBZFz53v">https://t.co/AGFBZFz53v</a> &mdash; @NASAVoyager

The challenge is that the computers were built in the 1970s using old code and send data very slowly by today's standards.

In addition, these computers are so deep in space, it takes 22.5 hours for a radio signal from Voyager 1 to reach Earth. That means the controllers on the ground have to wait 45 hours for each two-way communication with the spacecraft.

Given how very, very far they are from home, if something goes wrong with them, it's up to engineers on the ground to fix it by sending radio signals since reaching them for repair missions isn't possible. We're a long way from the fictional warp drive and sub-space communication that made life so easy on the Starship Enterprise of Star Trek fame. 

The twin Voyagers are now the most distant objects ever sent from Earth; a demonstration of how vast space is and how slow our spacecraft are. In 1977, I attended the launch of Voyager 2 when my hair was black and skin was smooth. This one mission with Voyager 1 and 2 has occupied a good chunk of my lifetime.

A young looking Bob McDonald wearing a space-themed t-shirt stands next to another young man with a star on his shirt with the golden record over his shoulder.

In another few years, the RTGs on both Voyagers are expected to run down to the point where the spacecraft will no longer be able to communicate with Earth. They will just continue to drift in silence among the stars of the Milky Way for billions of years. 

However, there is one item on both Voyagers that will continue to function, the Golden Record, which carries a message from Earth to anyone out there who may find the spacecraft in the future.

The chances of them being found are astronomically small, but they will become the longest running experiment in human history.

A close up image of the Voyager record shows some diagrams on the front as a time capsule.

ABOUT THE AUTHOR

voyager 1 space flight simulator

Bob McDonald is the host of CBC Radio's award-winning weekly science program, Quirks & Quarks. He is also a science commentator for CBC News Network and CBC TV's The National. He has received 12 honorary degrees and is an Officer of the Order of Canada.

  • Quirks & Quarks
  • Bob McDonald's recent columns

voyager 1 space flight simulator

NASA tries to jog Voyager 1's memory from 15 billion miles away

Since you can't get a soldering iron out there, the fix will be in software.

Engineers at NASA have pinpointed some corrupted memory as the cause of Voyager 1's troubles and are working on a remote fix to deal with the hardware problem.…

The veteran probe began sending unreadable data back to Earth in late 2023, and engineers have tried to understand the nature of the issue. Last month, they sent a command – a "poke" to the spacecraft's Flight Data System (FDS) – and the resulting data stream contained a complete memory dump from the computer.

The team was able to use this readout, which contained the computer's code and variables, to ascertain that approximately 3 percent of the FDS memory had been corrupted. That corruption is preventing normal operation of the FDS, which is responsible for packaging the probe's engineering and science data before it gets passed to the Telemetry Modulation Unit (TMU), the radio transmitter and is sent back to Earth.

The Voyager team reckons that a single chip responsible for the corrupted portion of memory is at fault, although they can only make an informed guess with regard to what has happened.

Two leading theories are that the chip has simply worn out having spent 46 years in space, or that an energetic particle might have damaged it.

As Voyager 1 is well out of the reach of any physical intervention, the issue will need to be addressed in software.

According to NASA: "Although it may take weeks or months, engineers are optimistic they can find a way for the FDS to operate normally without the unusable memory hardware, which would enable Voyager 1 to begin returning science and engineering data again."

Computer problems caused by cosmic rays and energetic particles have long challenged spacecraft designers. Some might merely result in a bit flip, while others can leave satellites inoperable or damaged.

Voyager 2 suffered a bit flip in 2010, which caused problems with science data transmitted from the spacecraft and was traced to the FDS. A computer reset dealt with the problem.

This time, however, the hardware appears to have become inoperative, requiring engineers to devise something more complicated than a simple turn-it-off-and-on-again solution. ®

NASA tries to jog Voyager 1's memory from 15 billion miles away

IMAGES

  1. Voyager 1 Launch in Spaceflight Simulator!

    voyager 1 space flight simulator

  2. Nasa Voyager 1 simulated in || Spaceflight simulator

    voyager 1 space flight simulator

  3. How to build Voyager 1 probe in Spaceflight Simulator 1.52

    voyager 1 space flight simulator

  4. The Best of Voyager: The Longest-Running Space Mission in History

    voyager 1 space flight simulator

  5. Voyager 1 Launch in space flight Simulator!!!

    voyager 1 space flight simulator

  6. Launching voyager 1| Spaceflight Simulator

    voyager 1 space flight simulator

VIDEO

  1. Space Flight Simulator #مغامرة للفضاء 1

  2. Space Flight Simulator

  3. Voyager 1 Stuns NASA with Mysterious Encounter in Interstellar Space

  4. Voyager 1: Journey to the Edge of the Solar System 🚀🪐

  5. Space Flight Simulator

  6. 45 лет назад "Вояджер 1" отправил сообщение инопланетянам

COMMENTS

  1. Voyager

    Site Manager: Jon Nelson Webmasters: Anil Natha, Luis Espinoza Webmasters: Anil Natha, Luis Espinoza

  2. How to build Voyager 1 probe in Spaceflight Simulator 1.52

    Very simple but effective Voyager design. Watch my other Voyager video for the range and stats of the craft. Please comment suggestions

  3. Voyager

    In the NASA Eyes on the Solar System app, you can see the real spacecraft trajectories of the Voyagers, which are updated every five minutes. Distance and velocities are updated in real-time. For a full 3D, immersive experience click on View Voyagers link below to launch the NASA Eyes on the Solar System app. View Voyager.

  4. Voyager 1

    Hello guys and welcome back I hope you enjoyed this and keep in mind this was not my build but surely an awesome onemade by: Spaceman SFSBP: https://sharing....

  5. Voyager 1 Mission || SFS 1.5

    Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and interstellar space beyon...

  6. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, ... On December 12, 2023, NASA announced that Voyager 1 's flight data system is currently unable to use its telemetry modulation unit, ... Voyager 1 in a space simulator chamber. Gold-Plated Record is attached to Voyager 1.

  7. The Brains of the Voyager Spacecraft: Command, Data, and Attitude

    Unmanned space exploration became much less of a priority during this time, and so keeping cost developments low was important to allow the overall project to continue. Viking CCS memory. Image courtesy of NASA. The new elements to the overall Voyager computers would be the Flight Data System (FDS) and the Attitude Articulation Control System ...

  8. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar space beyond the Sun's heliosphere. It was launched 16 days after its twin Voyager 2. It communicates through the NASA Deep Space Network (DSN) to receive routine commands and to transmit data to Earth. Real-time distance and velocity data is ...

  9. NASA's Voyager Will Do More Science With New Power Strategy

    The Voyager proof test model, shown in a space simulator chamber at JPL in 1976, was a replica of the twin Voyager space probes that launched in 1977. The model's scan platform stretches to the right, holding several of the spacecraft's science instruments in their deployed positions.

  10. Univoyager

    Univoyager is an upcoming space flight simulator game with 3d procedural graphics and realistic physics. ... Trade and Combat in a procedurally generated 1:1 universe with seamless planetary flight. An infinite playing field. Univoyager is being developed around a custom 3D Engine that allows you to space-travel without interruption and limits ...

  11. NASA Voyager 1 Encounters New Region in Deep Space

    Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0724. [email protected]. Dwayne Brown. 202-358-1726. [email protected]. 2012-381. NASA's Voyager 1 spacecraft has entered a new region at the far reaches of our solar system that scientists feel is the final area the spacecraft has to cross before reaching interstellar space.

  12. Mission Overview

    In August 2012, Voyager 1 made the historic entry into interstellar space, the region between stars, filled with material ejected by the death of nearby stars millions of years ago. Voyager 2 entered interstellar space on November 5, 2018 and scientists hope to learn more about this region.

  13. NASA's Voyager Will Do More Science With New Power Strategy

    The Voyager proof test model, shown in a space simulator chamber at JPL in 1976, was a replica of the twin Voyager space probes that launched in 1977. The model's scan platform stretches to the right, holding several of the spacecraft's science instruments in their deployed positions. Credit: NASA/JPL-Caltech

  14. What does Voyager 1 speed look like on earth?

    In this video, we'll take a look at what Voyager 1 speed looks like on earth using Microsoft Flight Simulator.Help me get to 100k subs!

  15. Blueprint Downloads

    Does anyone have a launch pad like the one on the space shuttle? Dogezilla; Jan 27, 2021; Replies 21 Views 24,654. Oct 5, 2023. Pink. A rocket from space agency (SA) SpaceMoon; Jan 20, 2023; Replies 19 Views ... Aug 1, 2023. Phoenix Aerospace. SATURN V Apollo 11. BSA Space Agency; Oct 24, 2020; 2 3. Replies 51 Views 90,924. Jul 23, 2023. Jarrah ...

  16. NASA's Voyager 1 glitch has scientists sad yet hopeful ...

    In December of 2023, the Voyager 1 team announced that the spacecraft's malfunction lies with its Flight Data System, or FDS, which is one of its onboard computers. There used to be a backup FDS ...

  17. Engineers Pinpoint Cause of Voyager 1 Issue, Are Working on Solution

    Engineers have confirmed that a small portion of corrupted memory in one of the computers aboard NASA's Voyager 1 has been causing the spacecraft to send unreadable science and engineering data to Earth since last November. Called the flight data subsystem (FDS), the computer is responsible for packaging the probe's science and engineering ...

  18. We finally know why NASA's Voyager 1 spacecraft stopped communicating

    The glitch caused Voyager 1 to send unreadable data back to Earth, and is found in the NASA spacecraft's flight data subsystem (FDS). That's the system responsible for packaging the probe's ...

  19. NASA engineers rally to save voyager 1, the icon of space exploration

    Flight data system. NASA engineers are currently addressing an issue concerning one of the three onboard computers of Voyager 1, known as the flight data system (FDS).

  20. Voyager 1 Misson in Space flight Simulator

    Do not forget to subscribeThank for watching_____ Space flight Simulator_____Do Not forget to subscribe_____...

  21. NASA knows what knocked Voyager 1 offline, but it will take a while to

    Enlarge / A Voyager space probe in a clean room at the Jet Propulsion Laboratory in 1977. ... The faulty memory bank is located in Voyager 1's Flight Data System (FDS), one of three computers on ...

  22. Engineers attempt to fix a computer glitch on Voyager 1

    In addition, these computers are so deep in space, it takes 22.5 hours for a radio signal from Voyager 1 to reach Earth. That means the controllers on the ground have to wait 45 hours for each two ...

  23. Voyager 1 Trajectory through the Solar System

    This visualization tracks the trajectory of the Voyager 1 spacecraft through the solar system. Launched on September 5, 1977, it was one of two spacecraft se...

  24. NASA tries to jog Voyager 1's memory from 15 billion miles away

    Engineers at NASA have pinpointed some corrupted memory as the cause of Voyager 1's troubles and are working on a remote fix to deal with the hardware problem.…. The veteran probe began sending ...