NASA Logo

Voyager 1 and Voyager 2

Where are they now.

Both Voyager 1 and Voyager 2 have reached "interstellar space" and each continue their unique journey deeper into the cosmos. In NASA's Eyes on the Solar System app, you can see the actual spacecraft trajectories of the Voyagers updated every five minutes.

Mission Status

Instrument status.

This illustration shows the various instruments locations on the Voyager spacecraft.

Voyager 1 Present Position

Voyager 2 present position, voyager's grand tour: 1977 - today.

April 22, 2024

After Months of Gibberish, Voyager 1 Is Communicating Well Again

NASA scientists spent months coaxing the 46-year-old Voyager 1 spacecraft back into healthy communication

By Meghan Bartels

Artist's rendering of Voyager in space

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012.

NASA/JPL-Caltech

After months of nonsensical transmissions from humanity’s most distant emissary, NASA’s iconic Voyager 1 spacecraft is finally communicating intelligibly with Earth again.

Voyager 1 launched in 1977 , zipped past Jupiter and Saturn within just a few years and has been trekking farther from our sun ever since; the craft crossed into interstellar space in 2012. But in mid-November 2023 Voyager 1’s data transmissions became garbled , sending NASA engineers on a slow quest to troubleshoot the distant spacecraft. Finally, that work has paid off, and NASA has clear information on the probe’s health and status, the agency announced on April 22.

“It’s the most serious issue we’ve had since I’ve been the project manager, and it’s scary because you lose communication with the spacecraft,” said Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory in an interview with Scientific American when the team was still tracking down the issue.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

The Voyager 1 spacecraft is a scientific legend : It discovered that Jupiter’s moon Io, far from being a dead world like our own companion, is instead a supervolcanic world . The craft’s data suggested that Saturn’s moon Titan might have liquid on its surface. And for more than a decade, Voyager 1 has given scientists a glimpse at what space looks like beyond the influence of our sun.

Yet its long years in the harsh environment of space have done a number on the probe, which was designed to last just four years. In particular, degraded performance and low power supplies have forced NASA to turn off six of its 10 instruments, and its communication has gotten even spottier than can be explained by the fact that cosmic mechanics mean a signal takes nearly one Earth day to travel between humans and the probe.

When the latest communications glitch occurred last fall, scientists could still send signals to the distant probe, and they could tell that the spacecraft was operating. But all they got from Voyager 1 was gibberish—what NASA described in December 2023 as “a repeating pattern of ones and zeros.” The team was able to trace the issue back to a part of the spacecraft’s computer system called the flight data subsystem, or FDS, and identified that a particular chip within that system had failed.

Mission personnel couldn’t repair the chip. They were, however, able to break the code held on the failed chip into pieces they could tuck into spare corners of the FDS’s memory, according to NASA. The first such fix was transmitted to Voyager 1 on April 18. With a total distance of 30 billion miles to cross from Earth to the spacecraft and back, the team had to wait nearly two full days for a response from the probe. But on April 20 NASA got confirmation that the initial fix worked. Additional commands to rewrite the rest of the FDS system’s lost code are scheduled for the coming weeks, according to the space agency, including commands that will restore the spacecraft’s ability to send home science data.

Although, for now, Voyager 1 appears to be on the mend, NASA scientists know it won’t last forever. Sooner or later, a glitch they can’t fix will occur, or the spacecraft’s ever dwindling fuel supply will run out for good. Until then NASA is determined to get as much data as possible out of the venerable spacecraft—and its twin, Voyager 2, which experienced its own communications glitch earlier in 2023 .

  • Skip to main content
  • Keyboard shortcuts for audio player

Well, hello, Voyager 1! The venerable spacecraft is once again making sense

Nell Greenfieldboyce 2010

Nell Greenfieldboyce

where is voyager 1 in 2023

Members of the Voyager team celebrate at NASA's Jet Propulsion Laboratory after receiving data about the health and status of Voyager 1 for the first time in months. NASA/JPL-Caltech hide caption

Members of the Voyager team celebrate at NASA's Jet Propulsion Laboratory after receiving data about the health and status of Voyager 1 for the first time in months.

NASA says it is once again able to get meaningful information back from the Voyager 1 probe, after months of troubleshooting a glitch that had this venerable spacecraft sending home messages that made no sense.

The Voyager 1 and Voyager 2 probes launched in 1977 on a mission to study Jupiter and Saturn but continued onward through the outer reaches of the solar system. In 2012, Voyager 1 became the first spacecraft to enter interstellar space, the previously unexplored region between the stars. (Its twin, traveling in a different direction, followed suit six years later.)

Voyager 1 had been faithfully sending back readings about this mysterious new environment for years — until November, when its messages suddenly became incoherent .

NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

It was a serious problem that had longtime Voyager scientists worried that this historic space mission wouldn't be able to recover. They'd hoped to be able to get precious readings from the spacecraft for at least a few more years, until its power ran out and its very last science instrument quit working.

For the last five months, a small team at NASA's Jet Propulsion Laboratory in California has been working to fix it. The team finally pinpointed the problem to a memory chip and figured out how to restore some essential software code.

"When the mission flight team heard back from the spacecraft on April 20, they saw that the modification worked: For the first time in five months, they have been able to check the health and status of the spacecraft," NASA stated in an update.

The usable data being returned so far concerns the workings of the spacecraft's engineering systems. In the coming weeks, the team will do more of this software repair work so that Voyager 1 will also be able to send science data, letting researchers once again see what the probe encounters as it journeys through interstellar space.

After a 12.3 billion-mile 'shout,' NASA regains full contact with Voyager 2

After a 12.3 billion-mile 'shout,' NASA regains full contact with Voyager 2

  • interstellar mission

Watch CBS News

Most distant spacecraft from Earth sends data to NASA for first time in 5 months

By Kerry Breen

Updated on: April 23, 2024 / 8:45 PM EDT / CBS News

The most distant spacecraft from Earth has resumed sending data after a five-month gap, NASA said Monday. 

NASA's Voyager 1 spacecraft was launched in 1977, about two weeks after the launch of its twin, Voyager 2. The spacecraft has spent over 45 years studying the outer solar system and has made flybys of Jupiter and Saturn and traveled more than 46,000,000,000 miles . 

In November 2023, the spacecraft stopped sending "readable science and engineering data," NASA said in a news release . Mission controllers were able to determine that Voyager 1 was still receiving commands from Earth and operating normally, but the science data could not be read and researchers did not know the status of the craft's onboard engineering systems. 

1-voyager-2-copy-width-1320.jpg

Last month, the craft's engineering team was able to confirm that the issue was related to one of the three onboard computers that make up Voyager 1's flight data subsystem. That system is what packages science and engineering data into a readable format before sending it to Earth. The team determined that "a single chip responsible for storing a portion of the (system's) memory," including some computer software code, wasn't working. 

The chip couldn't be repaired and the code was too large to place in one new location, NASA said, so the team worked to relocate the affected code into multiple sections of the flight data subsystem. It took weeks to repackage the code, NASA said, and last Thursday, the new location was communicated to Voyager 1. 

It takes about 22 and a half hours for a radio signal to reach Voyager 1 in interstellar space , or the space between stars, NASA said. On Saturday, the spacecraft's mission team received a response, confirming that the code modification had worked. 

e1-pia26275-voyager-copy-16-width-1320.jpg

Engineers celebrated receiving new data for the first time in almost half a year, but the work isn't done yet. NASA said that in the coming weeks, the mission team will "relocate and adjust the other affected portions" of the software, including portions that will start returning science data. Meanwhile, Voyager 2 continues to operate with no issues, and both craft will continue to report back on the distant reaches of the solar system. 

Kerry Breen is a reporter and news editor at CBSNews.com. A graduate of New York University's Arthur L. Carter School of Journalism, she previously worked at NBC News' TODAY Digital. She covers current events, breaking news and issues including substance use.

More from CBS News

Spacecraft spots "spiders" scattered across surface of Mars

Man who hoped to be first Black astronaut in 1960s finally heading to space

Olympic gold medalist Gabby Douglas competes for first time since 2016

Hamas hostage's niece worries a deal isn't in Netanyahu's "political interest"

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

slide1 background

NASA’s Voyager Team Focuses on Software Patch, Thrusters

slide1 background

NASA Mission Update: Voyager 2 Communications Pause

slide1 background

NASA's Voyager Will Do More Science With New Power Strategy

slide1 background

Edward Stone Retires After 50 Years as NASA Voyager's Project Scientist

slide1 background

Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

Voyager 1 distance from earth, voyager 1 distance from sun, voyager 1 one-way light time, voyager 1 cosmic ray data, voyager 2 distance from the earth, voyager 2 distance from the sun, voyager 2 one-way light time, voyager 2 cosmic ray data, what's happening now.

This artist's concept shows NASA's Voyager spacecraft.

Since November 2023, NASA’s Voyager 1 spacecraft has been sending a steady radio signal to Earth, but the signal does not contain usable data.

Engineers are working to resolve an issue with one of Voyager 1’s three onboard computers, called the flight data system (FDS).

' class=

The efforts should help extend the lifetimes of the agency's interstellar explorers.

Screenshot of the video 'Voyager at 40: Keep Reaching for the Stars'.

Download the Voyager 40th Anniversary posters.

where is voyager 1 in 2023

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • Personal Finance
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Personal finance
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

This illustration provided by NASA depicts Voyager 1. The most distant spacecraft from Earth stopped sending back understandable data in November 2023. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble. In mid-April 2024, NASA’s Jet Propulsion Laboratory declared success after receiving good engineering updates. The team is still working to restore transmission of the science data. (NASA via AP)

This illustration provided by NASA depicts Voyager 1. The most distant spacecraft from Earth stopped sending back understandable data in November 2023. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble. In mid-April 2024, NASA’s Jet Propulsion Laboratory declared success after receiving good engineering updates. The team is still working to restore transmission of the science data. (NASA via AP)

  • Copy Link copied

CAPE CANAVERAL, Fla. (AP) — NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble.

NASA’s Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can’t hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space — the space between star systems — since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

This photo provided by NASA shows the Perseverance Mars rover collecting a sample from a rock called "Bunsen Peak" using a coring bit on the end of its robotic arm on March 11, 2024. NASA has put the effort to bring the samples to Earth on hold until there is a faster, cheaper way. (NASA/JPL-Caltech/ASU via AP)

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Science and Educational Media Group. The AP is solely responsible for all content.

where is voyager 1 in 2023

share this!

April 22, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

NASA's Voyager 1 resumes sending engineering updates to Earth

NASA’s Voyager 1 resumes sending engineering updates to Earth

For the first time since November, NASA's Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA's Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft's three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it's sent to Earth.

The team discovered that a single chip responsible for storing a portion of the FDS memory—including some of the FDS computer's software code—isn't working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide the affected code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

NASA’s Voyager 1 resumes sending engineering updates to Earth

The team started by singling out the code responsible for packaging the spacecraft's engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22.5 hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22.5 hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification had worked: For the first time in five months, they were able to check the health and status of the spacecraft.

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago, the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Provided by NASA

Explore further

Feedback to editors

where is voyager 1 in 2023

Human activities have an intense impact on Earth's deep subsurface fluid flow

7 hours ago

where is voyager 1 in 2023

DNA study of Avar cemetery remains reveals network of large pedigrees and social practices

10 hours ago

where is voyager 1 in 2023

Global study shows a third more insects come out after dark

Apr 27, 2024

where is voyager 1 in 2023

Cicada-palooza! Billions of bugs to blanket America

where is voyager 1 in 2023

Getting dynamic information from static snapshots

where is voyager 1 in 2023

Ancient Maya blessed their ballcourts: Researchers find evidence of ceremonial offerings in Mexico

where is voyager 1 in 2023

Optical barcodes expand range of high-resolution sensor

Apr 26, 2024

where is voyager 1 in 2023

Ridesourcing platforms thrive on socio-economic inequality, say researchers

where is voyager 1 in 2023

Did Vesuvius bury the home of the first Roman emperor?

where is voyager 1 in 2023

Florida dolphin found with highly pathogenic avian flu: Report

Relevant physicsforums posts, quasi-moons, need help simplifying standard error formula for redshift, our beautiful universe - photos and videos.

Apr 25, 2024

Solar Activity and Space Weather Update thread

'devil' comet visible tonight 21.04.24, waves in space.

More from Astronomy and Astrophysics

Related Stories

where is voyager 1 in 2023

Engineers working to resolve issue with Voyager 1 computer

Dec 13, 2023

where is voyager 1 in 2023

NASA hears signal from Voyager 2 spacecraft after mistakenly cutting contact

Aug 1, 2023

where is voyager 1 in 2023

NASA listens for Voyager 2 spacecraft after wrong command cuts contact

Jul 31, 2023

where is voyager 1 in 2023

NASA's Voyager team focuses on software patch, thrusters

Oct 20, 2023

where is voyager 1 in 2023

NASA's Voyager will do more science with new power strategy

Apr 27, 2023

where is voyager 1 in 2023

Engineers investigating NASA's Voyager 1 telemetry data

May 18, 2022

Recommended for you

where is voyager 1 in 2023

Japan's moon lander wasn't built to survive a weekslong lunar night. It's still going after 3

Apr 24, 2024

where is voyager 1 in 2023

Simulated microgravity affects sleep and physiological rhythms, study finds

Apr 22, 2024

where is voyager 1 in 2023

'Tube map' around planets and moons made possible by knot theory

Apr 17, 2024

where is voyager 1 in 2023

NASA's Ingenuity Mars helicopter team says goodbye—for now

where is voyager 1 in 2023

NASA confirms mystery object that crashed through roof of Florida home came from space station

Apr 16, 2024

where is voyager 1 in 2023

NASA is seeking a faster, cheaper way to bring Mars samples to Earth

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

NASA's Voyager 1 sends readable message to Earth after 4 nail-biting months of gibberish

After four months of being unable to detect comprehensible data from the Voyager 1 spacecraft, NASA scientists have had fresh luck after sending a "poke."

Artists conception of Voyager 1 spacecraft entering interstellar space

After a nail-biting four months, NASA has finally received a comprehensible signal from its Voyager 1 spacecraft. 

Since November 2023, the almost-50-year-old spacecraft has been experiencing trouble with its onboard computers. Although Voyager 1, one of NASA's longest-lived space missions, has been sending a steady radio signal to Earth, it hasn't contained any usable data , which has perplexed scientists. 

Now, in response to a command prompt, or "poke," sent from Earth on March 1, NASA has received a new signal from Voyager 1 that engineers have been able to decode. Mission scientists hope this information may help them explain the spacecraft's recent communication problems. 

"The source of the issue appears to be with one of three onboard computers, the flight data subsystem (FDS), which is responsible for packaging the science and engineering data before it's sent to Earth by the telemetry modulation unit," NASA said in a blog post Wednesday (March 13) .

Related: NASA's 46-year-old Voyager 1 probe is no longer transmitting data

On March 1, as part of efforts to find a solution to Voyager 1's computer issues, NASA sent a command to the FDS on the spacecraft, instructing it to use different sequences in its software package, which would effectively mean skirting around any data that may be corrupted. 

Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth. This means any radio signals sent from our planet take 22.5 hours to reach the spacecraft, with any response taking the same time to be picked up by antennas on Earth. 

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

On March 3, NASA detected activity from one section of the FDS that differed from the "unreadable data stream" they'd previously been receiving. Four days later, engineers started the heavy task of trying to decode this signal. By March 10, the team discovered that the signal contained a readout of the entire FDS memory. This included the instructions for what the FDS needed to do, any values in its code that can be changed depending on commands from NASA or the spacecraft's status, and downloadable science or engineering data.  

Voyager 1 has ventured farther from Earth than any other human-made object . It was launched in 1977, within weeks of its twin spacecraft , Voyager 2. The initial aim of the mission was to explore Jupiter and Saturn . Yet after almost five decades, and with countless discoveries under their belts, the mission continues beyond the boundaries of the solar system . 

— NASA hears 'heartbeat' signal from Voyager 2 probe a week after losing contact

— Historic space photo of the week: Voyager 2 spies a storm on Saturn 42 years ago

— NASA reestablishes full contact with Voyager 2 probe after nail-biting 2-week blackout

NASA scientists will now "compare this readout to the one that came down before the issue arose and look for discrepancies in the code and the variables to potentially find the source of the ongoing issue," they said in the blog post.  

However, NASA stressed that it will take time to determine if any of the insights gained from this new signal can be used to solve Voyager 1's long-standing communication issues. 

Emily Cooke

Emily is a health news writer based in London, United Kingdom. She holds a bachelor's degree in biology from Durham University and a master's degree in clinical and therapeutic neuroscience from Oxford University. She has worked in science communication, medical writing and as a local news reporter while undertaking journalism training. In 2018, she was named one of MHP Communications' 30 journalists to watch under 30. ( [email protected]

Dying SpaceX rocket tears blood-red 'hole' in the sky over Texas — again

After months of sending gibberish to NASA, Voyager 1 is finally making sense again

Lavish 2,200-year-old tomb unearthed in China may be that of ancient king

  • Bruzote I have an inside source who says the message said, "Be sure to drink your Ovaltine." Reply
  • Grumpy-DC I love Ovaltine. Both flavors. And I remember "Captain Midnight" sponsored by same. Reply
Grumpy-DC said: I love Ovaltine. Both flavors. And I remember "Captain Midnight" sponsored by same.
  • View All 3 Comments

Most Popular

  • 2 Claude 3 Opus has stunned AI researchers with its intellect and 'self-awareness' — does this mean it can think for itself?
  • 3 Hundreds of black 'spiders' spotted in mysterious 'Inca City' on Mars in new satellite photos
  • 4 Plato's burial place finally revealed after AI deciphers ancient scroll carbonized in Mount Vesuvius eruption
  • 5 Giant, 82-foot lizard fish discovered on UK beach could be largest marine reptile ever found
  • 2 DNA analysis spanning 9 generations of people reveals marriage practices of mysterious warrior culture
  • 3 5 catastrophic megathrust earthquakes led to the demise of the pre-Aztec city of Teotihuacan, new study suggests
  • 4 'We were in disbelief': Antarctica is behaving in a way we've never seen before. Can it recover?
  • 5 China green-lights mass production of autonomous flying taxis — with commercial flights set for 2025

where is voyager 1 in 2023

NASA’s Voyager Team Focuses on Software Patch, Thrusters

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012. Traveling on a different trajectory, its twin, Voyager 2, entered interstellar space in 2018.

The efforts should help extend the lifetimes of the agency’s interstellar explorers.

Engineers for NASA’s Voyager mission are taking steps to help make sure both spacecraft, launched in 1977, continue to explore interstellar space for years to come.

One effort addresses fuel residue that seems to be accumulating inside narrow tubes in some of the thrusters on the spacecraft. The thrusters are used to keep each spacecraft’s antenna pointed at Earth. This type of buildup has been observed in a handful of other spacecraft.

The team is also uploading a software patch to prevent the recurrence of a glitch that arose on Voyager 1 last year. Engineers resolved the glitch , and the patch is intended to prevent the issue from occurring again in Voyager 1 or arising in its twin, Voyager 2.

Thruster Buildup

The thrusters on Voyager 1 and Voyager 2 are primarily used to keep the spacecraft antennas pointed at Earth in order to communicate. Spacecraft can rotate in three directions – up and down, to the left and right, and around the central axis, like a wheel. As they do this, the thrusters automatically fire and reorient the spacecraft to keep their antennas pointed at Earth.

Propellant flows to the thrusters via fuel lines and then passes through smaller lines inside the thrusters called propellant inlet tubes that are 25 times narrower than the external fuel lines. Each thruster firing adds tiny amounts of propellant residue, leading to gradual buildup of material over decades. In some of the propellant inlet tubes, the buildup is becoming significant. To slow that buildup, the mission has begun letting the two spacecraft rotate slightly farther in each direction before firing the thrusters. This will reduce the frequency of thruster firings.

The adjustments to the thruster rotation range were made by commands sent in September and October, and they allow the spacecraft to move almost 1 degree farther in each direction than in the past. The mission is also performing fewer, longer firings, which will further reduce the total number of firings done on each spacecraft.

The adjustments have been carefully devised to ensure minimal impact on the mission. While more rotating by the spacecraft could mean bits of science data are occasionally lost – akin to being on a phone call where the person on the other end cuts out occasionally – the team concluded the plan will enable the Voyagers to return more data over time.

Get the Latest JPL News

Engineers can’t know for sure when the thruster propellant inlet tubes will become completely clogged, but they expect that with these precautions, that won’t happen for at least five more years, possibly much longer. The team can take additional steps in the coming years to extend the lifetime of the thrusters even more.

“This far into the mission, the engineering team is being faced with a lot of challenges for which we just don’t have a playbook,” said Linda Spilker, project scientist for the mission as NASA’s Jet Propulsion Laboratory in Southern California. “But they continue to come up with creative solutions.”

Patching Things Up

In 2022, the onboard computer that orients the Voyager 1 spacecraft with Earth began to send back garbled status reports, despite otherwise continuing to operate normally. It took mission engineers months to pinpoint the issue . The attitude articulation and control system (AACS) was misdirecting commands, writing them into the computer memory instead of carrying them out. One of those missed commands wound up garbling the AACS status report before it could reach engineers on the ground.

The team determined the AACS had entered into an incorrect mode; however, they couldn’t determine the cause and thus aren’t sure if the issue could arise again. The software patch should prevent that.

“This patch is like an insurance policy that will protect us in the future and help us keep these probes going as long as possible,” said JPL’s Suzanne Dodd, Voyager project manager. “These are the only spacecraft to ever operate in interstellar space, so the data they’re sending back is uniquely valuable to our understanding of our local universe.”

Voyager 1 and Voyager 2 have traveled more than 15 billion and 12 billion miles from Earth, respectively. At those distances, the patch instructions will take over 18 hours to travel to the spacecraft. Because of the spacecraft’s age and the communication lag time, there’s some risk the patch could overwrite essential code or have other unintended effects on the spacecraft. To reduce those risks, the team has spent months writing, reviewing, and checking the code. As an added safety precaution, Voyager 2 will receive the patch first and serve as a testbed for its twin. Voyager 1 is farther from Earth than any other spacecraft, making its data more valuable.

The team will upload the patch and do a readout of the AACS memory to make sure it’s in the right place on Friday, Oct. 20. If no immediate issues arise, the team will issue a command on Saturday, Oct. 28, to see if the patch is operating as it should.

More About the Mission

The Voyager mission was originally scheduled to last only four years, sending both probes past Saturn and Jupiter. NASA extended the mission so that Voyager 2 could visit Uranus and Neptune; it is still the only spacecraft ever to have encountered the ice giants. In 1990, NASA extended the mission again, this time with the goal of sending the probes outside the heliosphere, a protective bubble of particles and magnetic fields created by the Sun. Voyager 1 reached the boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

For more information about the Voyager spacecraft, visit:

https://www.nasa.gov/voyager

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

Voyager 1 Is Sending Nonsensical Ones and Zeros Back to Earth

The end may finally be near ... for the spacecraft, at least.

a satellite in space

  • The first spacecraft to ever leave our heliosphere, Voyager 1 is a legendary spacecraft. Now, after 46 years, it is beginning to show its age.
  • According to NASA, a glitch in the spacecraft’s Flight Data System (FDS) is causing Voyager 1 to send back a repeating series of ones and zeroes rather than science and engineering data.
  • The Voyager team is currently working on a fix for the issue, but its 15-billion-mile distance and outdated tech means that a solution is likely weeks in the making—if it arrives at all.

Some 46 years after that initial launch, the science phase of Voyager 1’s mission may be about to come to an end. Last week, NASA announced that it was working to resolve a computer glitch aboard the spacecraft—part of its Flight Data System (FDS) was causing Voyager 1 to not ‘phone home’ any scientific or engineering data. Commands that take almost an entire day to reach Voyager 1—which is now, at 15 billion miles away, almost 11 times further away from Earth than Earth is from the Sun —combined with decades-old documents mean that a potential fix will likely be weeks in the making.

“Finding solutions to challenges that the Voyager probes encounter often entails consulting original, decades-old documents written by engineers who didn’t anticipate the issues that are arising today,” a NASA press release explained. “As a result, it takes time for the team to understand how a new command will affect the spacecraft’s operations in order to avoid unintended consequences.”

The precise issue affecting Voyager 1 is that the FDS is not communicating with one of the spacecraft’s subsystems, called the telemetry modulation unit (TMU). As the FDS gathers information—whether that be astronomical data or simple health check-ups—the TMU sends a single data package back to Earth. But right now, according to NASA, the TMU is only returning a “repeating pattern of ones and zeroes as if it were stuck.” The Voyager team has already tried restarting the FDS, but the classic “unplug it and plug it back in” didn’t resolve the glitch.

This isn’t the first mishap to showcase the Voyager spacecrafts’ age. This summer, NASA lost contact with Voyager 2 when a human error caused its antenna to tilt away from Earth—not good if you want steady, reliable communication with your far-flung probe. And in 2022, Voyager 1 experienced a glitch in its attitude articulation and control system (AACS) that made it send back similarly garbled telemetry data— a problem for which it took engineers several months to find a work around.

NASA hopes to keep both spacecraft operating with at least one science instrument until 2025, and to be able to send engineering data back to the probes for many more years with Deep Space Network (DSN)—an international array of radio antennas. If all goes according to plan, the DSN could still reach the twin spacecraft well into the mid-2030s.

Voyager 1 and Voyager 2 have far exceeded their original mission parameters, and are currently the oldest operating spacecraft in history—some “senior moments” are to be expected.

Headshot of Darren Orf

Darren lives in Portland, has a cat, and writes/edits about sci-fi and how our world works. You can find his previous stuff at Gizmodo and Paste if you look hard enough. 

preview for Popular Mechanics All Sections

.css-cuqpxl:before{padding-right:0.3125rem;content:'//';display:inline;} Solar System .css-xtujxj:before{padding-left:0.3125rem;content:'//';display:inline;}

life cycle of the sun, artwork

We Thought We Knew What Uranus Was Made Of

a bright light in the sky

What It‘s Like To See A Total Solar Eclipse

nasa's two voyager spacecraft exploring a turbulent region of space

This Is the Best Way to Exit Our Solar System

eclipse of the sun

Stream the Great American Solar Eclipse

diagram

2 Dwarf Planets Are Hiding Something Incredible

star trail's

Stars Passed in the Night—and Changed Our Climate

parker solar probe

NASA Might As Well Be Walking on the Sun

a close up of a tire

NASA Finally Opened a Canister of Asteroid Dust

large asteroid hitting earth

The 7 Greatest Cosmic Threats to Life on Earth

a meteorite impact crater in the northern arizona desert of the united states

Crater Proves the Universe Has a Wicked Curveball

lightning over the railroad at night

How Solar Storms Could Wreak Havoc on Railways

NASA finds clue while solving Voyager 1's communication breakdown case

An outlier signal has brought ground control closer to decoding the troubling problem.

An illustration shows Voyager 1 in interstellar space

NASA engineers are a step closer to solving the communication problem that left the Voyager 1 spacecraft, which presently sits outside the solar system, unable to send usable data back to Earth.

In 2012, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space . For 11 years following this achievement, the spacecraft dutifully sent data to ground control. This was data that detailed how space works beyond the influence of the sun. In Nov. 2023, however, Voyager 1's communications with ground operators stopped making sense. 

To be clear, however, Voyager 2 , which followed its spacecraft sibling out of the solar system in 2018, is still operational and communicating with Earth.

"Effectively, the call between the spacecraft and the Earth was still connected, but Voyager's 'voice' was replaced with a monotonous dial tone," Voyager 1's engineering team previously told Space.com .

The source of the issue appears to be one of Voyager 1's three onboard computers: The flight data subsystem (FDS). This computer, NASA says , is responsible for packaging science and engineering data before it's sent to Earth by the spacecraft's telemetry modulation unit.

Related: NASA's Voyager 1 glitch has scientists sad yet hopeful: 'Voyager 2 is still going strong'

The positive step towards solving communications issues between ground control and Voyager 1 came on March 3 when the Voyager mission team detected activity from one section of the FDS that was different from the rest of the computer’s garbled data stream.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Voyager 1's messaging to Earth comes in the form of 1s and 0s, a computer language called binary code — but since the end of last year, this code has carried no meaning. Even the newly detected signal is still not in the correct format Voyager 1 should be using when FDS is functioning as designed, meaning the operating team was initially not quite sure what to make of it.

This changed, however, when an engineer at NASA's Deep Space Network , which is tasked with operating radio antennas that communicate with Voyager 1 and its interstellar sibling Voyager 2, as well as other NASA spacecraft closer to home, got a look at the code. The unnamed engineer was able to decode the outlier signal, discovering that it contained a readout of the FDS' entire memory.

a groovy poster shows a space probe with large white satellite dish mounted on a metal frame body with various length instruments jut out. surrounding colors are gold and orange, with a dark hombre background.

Encoded with the FDS memory are performance instructions and code values that can change either if the spacecraft's status changes or if commanded to do so. Science and engineering data to be sent back to Earth are also locked up in the memory. 

The team will now compare this new signal, which occurred because of a prompt, or "poke," from mission control, to data that was sent back to Earth just before Voyager 1 started spouting binary nonsense. Finding discrepancies between regular Voyager 1 data and this poke-prompted signal will help the crew hunt for the source of the issue. The idea of the poke was to prompt FDS to try using different sequences in its software package and determine if the communication issue could be resolved by navigating around a corrupted or damaged section.

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

Voyager 1 is currently around 15 billion miles (24 billion kilometers) from Earth, meaning that solving communication issues can be a painstaking process. It takes 22.5 hours to receive a radio signal from Voyager 1, then another 22.5 hours to receive a response via the Deep Space Network's antennas.

That means the results of NASA's poke were received on March 3, and on March 7 engineers started working to decode this signal. Three days later they determined the signal contains an FDS memory readout.

NASA scientists and engineers will continue to analyze this readout to restore communication with the pioneering space mission that extended humanity's reach beyond the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

SpaceX launching Falcon 9 rocket on record-tying 20th mission today

Boeing Starliner 1st astronaut flight: Live updates

Russia vetoes UN resolution against nuclear weapons in space

Most Popular

  • 2 Beavers are helping fight climate change, satellite data shows
  • 3 Astronomers just discovered a comet that could be brighter than most stars when we see it next year. Or will it?
  • 4 This Week In Space podcast: Episode 108 — Starliner: Better Late Than Never?
  • 5 Boeing's Starliner spacecraft will not fly private missions yet, officials say

where is voyager 1 in 2023

where is voyager 1 in 2023

Call us @ 08069405205

where is voyager 1 in 2023

Search Here

where is voyager 1 in 2023

  • An Introduction to the CSE Exam
  • Personality Test
  • Annual Calendar by UPSC-2024
  • Common Myths about the Exam
  • About Insights IAS
  • Our Mission, Vision & Values
  • Director's Desk
  • Meet Our Team
  • Our Branches
  • Careers at Insights IAS
  • Daily Current Affairs+PIB Summary
  • Insights into Editorials
  • Insta Revision Modules for Prelims
  • Current Affairs Quiz
  • Static Quiz
  • Current Affairs RTM
  • Insta-DART(CSAT)
  • Insta 75 Days Revision Tests for Prelims 2024
  • Secure (Mains Answer writing)
  • Secure Synopsis
  • Ethics Case Studies
  • Insta Ethics
  • Weekly Essay Challenge
  • Insta Revision Modules-Mains
  • Insta 75 Days Revision Tests for Mains
  • Secure (Archive)
  • Anthropology
  • Law Optional
  • Kannada Literature
  • Public Administration
  • English Literature
  • Medical Science
  • Mathematics
  • Commerce & Accountancy
  • Monthly Magazine: CURRENT AFFAIRS 30
  • Content for Mains Enrichment (CME)
  • InstaMaps: Important Places in News
  • Weekly CA Magazine
  • The PRIME Magazine
  • Insta Revision Modules-Prelims
  • Insta-DART(CSAT) Quiz
  • Insta 75 days Revision Tests for Prelims 2022
  • Insights SECURE(Mains Answer Writing)
  • Interview Transcripts
  • Previous Years' Question Papers-Prelims
  • Answer Keys for Prelims PYQs
  • Solve Prelims PYQs
  • Previous Years' Question Papers-Mains
  • UPSC CSE Syllabus
  • Toppers from Insights IAS
  • Testimonials
  • Felicitation
  • UPSC Results
  • Indian Heritage & Culture
  • Ancient Indian History
  • Medieval Indian History
  • Modern Indian History
  • World History
  • World Geography
  • Indian Geography
  • Indian Society
  • Social Justice
  • International Relations
  • Agriculture
  • Environment & Ecology
  • Disaster Management
  • Science & Technology
  • Security Issues
  • Ethics, Integrity and Aptitude

InstaCourses

  • Indian Heritage & Culture
  • Enivornment & Ecology

Print Friendly, PDF & Email

Facts for Prelims (FFP)

Source: The Guardian

  Context: Voyager 1, Earth’s farthest spacecraft, is back online after engineers remotely fixed its 46-year-old systems.

The Voyager mission , conducted by NASA , launched Voyager 1 on September 5, 1977, followed by Voyager 2 on August 20, 1977 . Its objective was to explore the outer planets of the solar system: Jupiter, Saturn, Uranus, and Neptune. Key features include flybys of Jupiter and Saturn, with Voyager 2 continuing to Uranus and Neptune, becoming the only craft to visit these planets. Both Voyagers entered interstellar space after their primary missions. Their discoveries include detailed images of planets, moons, and atmospheric data . Voyager 1 made groundbreaking discoveries such as active volcanoes on Io and Saturn’s ring structure .

where is voyager 1 in 2023

  • Our Mission, Vision & Values
  • Director’s Desk
  • Commerce & Accountancy
  • Previous Years’ Question Papers-Prelims
  • Previous Years’ Question Papers-Mains
  • Environment & Ecology
  • Science & Technology

COMMENTS

  1. Voyager

    Both Voyager 1 and Voyager 2 have reached "Interstellar space" and each continue their unique journey through the Universe. In the NASA Eyes on the Solar System app, you can see the real spacecraft trajectories of the Voyagers, which are updated every five minutes. ... 2023 Tracking Schedule 23_01_05-23_01_23 23_01_12-23_01_30 23_01_19-23_02_06 ...

  2. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars). Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally.

  3. Where Are They Now?

    Voyager 1 Present Position. This simulated view of the solar system allows you to explore the planets, moons, asteroids, comets, and spacecraft exploring our solar system. You can also fast-forward and rewind in real-time. NASA/JPL-Caltech.

  4. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    However, on Nov. 14, 2023, after 11 years of exploring interstellar space and while sitting a staggering 15 billion miles (24 billion kilometers) from Earth, Voyager 1's binary code — computer ...

  5. After Months of Gibberish, Voyager 1 Is Communicating Well Again

    But all they got from Voyager 1 was gibberish—what NASA described in December 2023 as "a repeating pattern of ones and zeros." The team was able to trace the issue back to a part of the ...

  6. NASA's Voyager 1 team is having success in repairing a worrying ...

    The Voyager 1 and Voyager 2 probes launched in 1977 on a mission to study Jupiter and Saturn but continued onward through the outer reaches of the solar system. In 2012, Voyager 1 became the first ...

  7. Most distant spacecraft from Earth sends data to NASA for first time in

    The most distant spacecraft from Earth has resumed sending data after a five-month gap, NASA said Monday. NASA's Voyager 1 spacecraft was launched in 1977, about two weeks after the launch of its ...

  8. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, 1977, ... On December 12, 2023, NASA announced that Voyager 1 's flight data system was unable to use its telemetry modulation unit, preventing it from transmitting scientific data. On April 18, 2024, NASA deployed a workaround, and data transmissions resumed two days later. ...

  9. Voyager

    This is a real-time indicator of Voyager 1's distance from Earth in astronomical units (AU) and either miles (mi) or kilometers (km). Note: Because Earth moves around the sun faster than Voyager 1 is speeding away from the inner solar system, the distance between Earth and the spacecraft actually decreases at certain times of year.

  10. Voyager 1 Is Humanity's Most Distant Creation

    Launched in 1977 and now nearly 15 billion miles from the Sun, Voyager 1 continues its journey at 38,000 miles per hour. by Frank Jacobs, Big Think June 23, 2023 Explore the View From Humanity's ...

  11. How the Voyager probes keep going and going decades after launch

    This artist's concept depicts NASA's Voyager 1 spacecraft entering interstellar space, or the space between stars. Interstellar space is dominated by the plasma, or ionized gas, that was ejected ...

  12. NASA hears from Voyager 1, its most distant spacecraft, after months of

    This illustration provided by NASA depicts Voyager 1. The most distant spacecraft from Earth stopped sending back understandable data in November 2023. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft's coding to work around the trouble. In mid-April 2024, NASA's Jet Propulsion ...

  13. The most distant spacecraft in the solar system

    What have Voyager 1 and 2, Pioneer 10 and 11 and New Horizons been up to in 2022? Skip to main content. ... KEM2 began on Oct. 1, although the spacecraft will hibernate until March 1, 2023.

  14. NASA's Voyager 1 resumes sending engineering updates to Earth

    Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and ...

  15. Voyager 1

    About the mission. Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence. Launched just shortly after its twin spacecraft, Voyager 2, in 1977, Voyager 1 explored the Jovian and Saturnian systems discovering new moons, active volcanoes and a wealth of data about the outer solar system.

  16. NASA's Voyager Will Do More Science With New Power Strategy

    Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469. [email protected]. 2023-059. The plan will keep Voyager 2's science instruments turned on a few years longer than previously anticipated, enabling yet more revelations from interstellar space.

  17. NASA's interstellar Voyager 1 spacecraft isn't doing so well

    Since late 2023, engineers have been trying to get the Voyager spacecraft back online. On Dec. 12, 2023, NASA shared some worrisome news about Voyager 1, the first probe to walk away from our ...

  18. Voyager program

    As of 2023, Voyager 1 is moving with a velocity of 61,198 kilometers per hour (38,027 mph), or 17 km/s, relative to the Sun, and is 24,211,500,000 kilometers (1.50443 × 10 10 mi) from the Sun reaching a distance of 161.844 AU (24.2 billion km; 15.0 billion mi) from Earth as of November 25, 2023. On 25 August 2012, data from Voyager 1 indicated that it had entered interstellar space.

  19. NASA's Voyager 1 sends readable message to Earth after 4 nail-biting

    Since November 2023, the almost-50-year-old spacecraft has been experiencing trouble with its onboard computers. ... Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth. ...

  20. NASA's Voyager Team Focuses on Software Patch, Thrusters

    Oct. 20, 2023 NASA's Voyager 1 spacecraft is depicted in this artist's concept traveling through interstellar space, or the space between stars, which it entered in 2012. Traveling on a different trajectory, its twin, Voyager 2, entered interstellar space in 2018. ... Voyager 1 and Voyager 2 have traveled more than 15 billion and 12 billion ...

  21. Voyager 1 Is Sending Nonsensical Ones and Zeros Back to Earth

    By Darren Orf Published: Dec 22, 2023 11:00 AM EST. Save Article. Caltech/NASA-JPL. The first spacecraft to ever leave our heliosphere, Voyager 1 is a legendary spacecraft. Now, after 46 years, it ...

  22. NASA finds clue while solving Voyager 1's communication breakdown case

    In 2023, humanity's pioneering space mission, Voyager 1, stopped sending understandable data back to Earth. Now, NASA engineers may be closer to discovering the source of the issue.

  23. Voyager 1 stops communicating with Earth

    Voyager 1 is so far away that it takes 22.5 hours for commands sent from Earth to reach the spacecraft. Additionally, the team must wait 45 hours to receive a response. Keeping the Voyager probes ...

  24. Insights Ias

    The Voyager mission, conducted by NASA, launched Voyager 1 on September 5, 1977, followed by Voyager 2 on August 20, 1977. Its objective was to explore the outer planets of the solar system: Jupiter, Saturn, Uranus, and Neptune. ... Interview Guidance Program 2023. Register here . APEC 2024- Advanced Prelims Enrichment Course. Offline in ...