We have completed maintenance on Astronomy.com and action may be required on your account. Learn More

Astronomy Magazine logo

  • Login/Register
  • Solar System
  • Exotic Objects
  • Upcoming Events
  • Deep-Sky Objects
  • Observing Basics
  • Telescopes and Equipment
  • Astrophotography
  • Space Exploration
  • Human Spaceflight
  • Robotic Spaceflight
  • The Magazine

What is the speed of light? Here’s the history, discovery of the cosmic speed limit

Time travel is one of the most intriguing topics in science.

On one hand, the speed of light is just a number: 299,792,458 meters per second. And on the other, it’s one of the most important constants that appears in nature and defines the relationship of causality itself.

As far as we can measure, it is a constant. It is the same speed for every observer in the entire universe. This constancy was first established in the late 1800’s with the experiments of Albert Michelson and Edward Morley at Case Western Reserve University . They attempted to measure changes in the speed of light as the Earth orbited around the Sun. They found no such variation, and no experiment ever since then has either.

Observations of the cosmic microwave background, the light released when the universe was 380,000 years old, show that the speed of light hasn’t measurably changed in over 13.8 billion years.

In fact, we now define the speed of light to be a constant, with a precise speed of 299,792,458 meters per second. While it remains a remote possibility in deeply theoretical physics that light may not be a constant, for all known purposes it is a constant, so it’s better to just define it and move on with life.

How was the speed of light first measured?

In 1676 the Danish astronomer Ole Christensen Romer made the first quantitative measurement of how fast light travels. He carefully observed the orbit of Io, the innermost moon of Jupiter. As the Earth circles the Sun in its own orbit, sometimes it approaches Jupiter and sometimes it recedes away from it. When the Earth is approaching Jupiter, the path that light has to travel from Io is shorter than when the Earth is receding away from Jupiter. By carefully measuring the changes to Io’s orbital period, Romer calculated a speed of light of around 220,000 kilometers per second.

Observations continued to improve until by the 19 th century astronomers and physicists had developed the sophistication to get very close to the modern value. In 1865, James Clerk Maxwell made a remarkable discovery. He was investigating the properties of electricity and magnetism, which for decades had remained mysterious in unconnected laboratory experiments around the world. Maxwell found that electricity and magnetism were really two sides of the same coin, both manifestations of a single electromagnetic force.

James Clerk Maxwell contributed greatly to the discover of the speed of light.

As Maxwell explored the consequences of his new theory, he found that changing magnetic fields can lead to changing electric fields, which then lead to a new round of changing magnetic fields. The fields leapfrog over each other and can even travel through empty space. When Maxwell went to calculate the speed of these electromagnetic waves, he was surprised to see the speed of light pop out – the first theoretical calculation of this important number.

What is the most precise measurement of the speed of light?

Because it is defined to be a constant, there’s no need to measure it further. The number we’ve defined is it, with no uncertainty, no error bars. It’s done. But the speed of light is just that – a speed. The number we choose to represent it depends on the units we use: kilometers versus miles, seconds versus hours, and so on. In fact, physicists commonly just set the speed of light to be 1 to make their calculations easier. So instead of trying to measure the speed light travels, physicists turn to more precisely measuring other units, like the length of the meter or the duration of the second. In other words, the defined value of the speed of light is used to establish the length of other units like the meter.

How does light slow down?

Yes, the speed of light is always a constant. But it slows down whenever it travels through a medium like air or water. How does this work? There are a few different ways to present an answer to this question, depending on whether you prefer a particle-like picture or a wave-like picture.

In a particle-like picture, light is made of tiny little bullets called photons. All those photons always travel at the speed of light, but as light passes through a medium those photons get all tangled up, bouncing around among all the molecules of the medium. This slows down the overall propagation of light, because it takes more time for the group of photons to make it through.

In a wave-like picture, light is made of electromagnetic waves. When these waves pass through a medium, they get all the charged particles in motion, which in turn generate new electromagnetic waves of their own. These interfere with the original light, forcing it to slow down as it passes through.

Either way, light always travels at the same speed, but matter can interfere with its travel, making it slow down.

Why is the speed of light important?

The speed of light is important because it’s about way more than, well, the speed of light. In the early 1900’s Einstein realized just how special this speed is. The old physics, dominated by the work of Isaac Newton, said that the universe had a fixed reference frame from which we could measure all motion. This is why Michelson and Morley went looking for changes in the speed, because it should change depending on our point of view. But their experiments showed that the speed was always constant, so what gives?

Einstein decided to take this experiment at face value. He assumed that the speed of light is a true, fundamental constant. No matter where you are, no matter how fast you’re moving, you’ll always see the same speed.

This is wild to think about. If you’re traveling at 99% the speed of light and turn on a flashlight, the beam will race ahead of you at…exactly the speed of light, no more, no less. If you’re coming from the opposite direction, you’ll still also measure the exact same speed.

This constancy forms the basis of Einstein’s special theory of relativity, which tells us that while all motion is relative – different observers won’t always agree on the length of measurements or the duration of events – some things are truly universal, like the speed of light.

Can you go faster than light speed?

Nope. Nothing can. Any particle with zero mass must travel at light speed. But anything with mass (which is most of the universe) cannot. The problem is relativity. The faster you go, the more energy you have. But we know from Einstein’s relativity that energy and mass are the same thing. So the more energy you have, the more mass you have, which makes it harder for you to go even faster. You can get as close as you want to the speed of light, but to actually crack that barrier takes an infinite amount of energy. So don’t even try.

How is the speed at which light travels related to causality?

If you think you can find a cheat to get around the limitations of light speed, then I need to tell you about its role in special relativity. You see, it’s not just about light. It just so happens that light travels at this special speed, and it was the first thing we discovered to travel at this speed. So it could have had another name. Indeed, a better name for this speed might be “the speed of time.”

Related: Is time travel possible? An astrophysicist explains

We live in a universe of causes and effects. All effects are preceded by a cause, and all causes lead to effects. The speed of light limits how quickly causes can lead to effects. Because it’s a maximum speed limit for any motion or interaction, in a given amount of time there’s a limit to what I can influence. If I want to tap you on the shoulder and you’re right next to me, I can do it right away. But if you’re on the other side of the planet, I have to travel there first. The motion of me traveling to you is limited by the speed of light, so that sets how quickly I can tap you on the shoulder – the speed light travels dictates how quickly a single cause can create an effect.

The ability to go faster than light would allow effects to happen before their causes. In essence, time travel into the past would be possible with faster-than-light travel. Since we view time as the unbroken chain of causes and effects going from the past to the future, breaking the speed of light would break causality, which would seriously undermine our sense of the forward motion of time.

Why does light travel at this speed?

No clue. It appears to us as a fundamental constant of nature. We have no theory of physics that explains its existence or why it has the value that it does. We hope that a future understanding of nature will provide this explanation, but right now all investigations are purely theoretical. For now, we just have to take it as a given.

does light travel at a constant speed

How do you find a black hole? An astronomer explains the thrilling hunt

A composite image showing the Full Moons in 2020 and 2021 by month.

2024 Full Moon calendar: Dates, times, types, and names

Martian 'spiders' imaged by the ESA’s ExoMars Trace Gas Orbiter. Credit: ESA/TGO/CaSSIS

The science behind the ‘spiders’ on Mars and the Inca City

does light travel at a constant speed

Planets on parade: This Week in Astronomy with Dave Eicher

The beautiful spiral galaxy Messier 83, which our Milky Way may resemble.

The Milky Way, to ancient Egyptians, was probably mixed Nuts

An artistic conception of the Milky Way, estimated to contain 100,000,000,000 (100 billion) stars.

The reasons why numbers go on forever

The May 2024 issue of Astronomy Magazine.

Astronomy Magazine Annual Index

does light travel at a constant speed

How to see the next 20 years of eclipses, including the eclipse of a lifetime

Black holes, like the one in this illustration, can emit energetic neutrinos. Credit: NASA/Chandra X-ray Observatory.

IceCube researchers detect a rare type of particle sent from powerful astronomical objects

What is the speed of light?

The speed of light is the speed limit of the universe. Or is it?

graphic representing the speed of light showing lines of light of different colors; blue, green, yellow and white.

What is a light-year?

  • Speed of light FAQs
  • Special relativity
  • Faster than light
  • Slowing down light
  • Faster-than-light travel

Bibliography

The speed of light traveling through a vacuum is exactly 299,792,458 meters (983,571,056 feet) per second. That's about 186,282 miles per second — a universal constant known in equations as "c," or light speed. 

According to physicist Albert Einstein 's theory of special relativity , on which much of modern physics is based, nothing in the universe can travel faster than light. The theory states that as matter approaches the speed of light, the matter's mass becomes infinite. That means the speed of light functions as a speed limit on the whole universe . The speed of light is so immutable that, according to the U.S. National Institute of Standards and Technology , it is used to define international standard measurements like the meter (and by extension, the mile, the foot and the inch). Through some crafty equations, it also helps define the kilogram and the temperature unit Kelvin .

But despite the speed of light's reputation as a universal constant, scientists and science fiction writers alike spend time contemplating faster-than-light travel. So far no one's been able to demonstrate a real warp drive, but that hasn't slowed our collective hurtle toward new stories, new inventions and new realms of physics.

Related: Special relativity holds up to a high-energy test

A l ight-year is the distance that light can travel in one year — about 6 trillion miles (10 trillion kilometers). It's one way that astronomers and physicists measure immense distances across our universe.

Light travels from the moon to our eyes in about 1 second, which means the moon is about 1 light-second away. Sunlight takes about 8 minutes to reach our eyes, so the sun is about 8 light minutes away. Light from Alpha Centauri , which is the nearest star system to our own, requires roughly 4.3 years to get here, so Alpha Centauri is 4.3 light-years away.

"To obtain an idea of the size of a light-year, take the circumference of the Earth (24,900 miles), lay it out in a straight line, multiply the length of the line by 7.5 (the corresponding distance is one light-second), then place 31.6 million similar lines end to end," NASA's Glenn Research Center says on its website . "The resulting distance is almost 6 trillion (6,000,000,000,000) miles!"

Stars and other objects beyond our solar system lie anywhere from a few light-years to a few billion light-years away. And everything astronomers "see" in the distant universe is literally history. When astronomers study objects that are far away, they are seeing light that shows the objects as they existed at the time that light left them. 

This principle allows astronomers to see the universe as it looked after the Big Bang , which took place about 13.8 billion years ago. Objects that are 10 billion light-years away from us appear to astronomers as they looked 10 billion years ago — relatively soon after the beginning of the universe — rather than how they appear today.

Related: Why the universe is all history

Speed of light FAQs answered by an expert

We asked Rob Zellem, exoplanet-hunter and staff scientist at NASA's Jet Propulsion Lab, a few frequently asked questions about the speed of light. 

Rob Zellem

Dr. Rob Zellem is a staff scientist at NASA's Jet Propulsion Laboratory, a federally funded research and development center operated by the California Institute of Technology. Rob is the project lead for Exoplanet Watch, a citizen science project to observe exoplanets, planets outside of our own solar system, with small telescopes. He is also the Science Calibration lead for the Nancy Grace Roman Space Telescope's Coronagraph Instrument, which will directly image exoplanets. 

What is faster than the speed of light?

Nothing! Light is a "universal speed limit" and, according to Einstein's theory of relativity, is the fastest speed in the universe: 300,000 kilometers per second (186,000 miles per second). 

Is the speed of light constant?

The speed of light is a universal constant in a vacuum, like the vacuum of space. However, light *can* slow down slightly when it passes through an absorbing medium, like water (225,000 kilometers per second = 140,000 miles per second) or glass (200,000 kilometers per second = 124,000 miles per second). 

Who discovered the speed of light?

One of the first measurements of the speed of light was by Rømer in 1676 by observing the moons of Jupiter . The speed of light was first measured to high precision in 1879 by the Michelson-Morley Experiment. 

How do we know the speed of light?

Rømer was able to measure the speed of light by observing eclipses of Jupiter's moon Io. When Jupiter was closer to Earth, Rømer noted that eclipses of Io occurred slightly earlier than when Jupiter was farther away. Rømer attributed this effect due the time it takes for light to travel over the longer distance when Jupiter was farther from the Earth. 

How did we learn the speed of light?

Galileo Galilei is credited with discovering the first four moons of Jupiter.

As early as the 5th century BC, Greek philosophers like Empedocles and Aristotle disagreed on the nature of light speed. Empedocles proposed that light, whatever it was made of, must travel and therefore, must have a rate of travel. Aristotle wrote a rebuttal of Empedocles' view in his own treatise, On Sense and the Sensible , arguing that light, unlike sound and smell, must be instantaneous. Aristotle was wrong, of course, but it would take hundreds of years for anyone to prove it. 

In the mid 1600s, the Italian astronomer Galileo Galilei stood two people on hills less than a mile apart. Each person held a shielded lantern. One uncovered his lantern; when the other person saw the flash, he uncovered his too. But Galileo's experimental distance wasn't far enough for his participants to record the speed of light. He could only conclude that light traveled at least 10 times faster than sound.

In the 1670s, Danish astronomer Ole Rømer tried to create a reliable timetable for sailors at sea, and according to NASA , accidentally came up with a new best estimate for the speed of light. To create an astronomical clock, he recorded the precise timing of the eclipses of Jupiter's moon , Io, from Earth . Over time, Rømer observed that Io's eclipses often differed from his calculations. He noticed that the eclipses appeared to lag the most when Jupiter and Earth were moving away from one another, showed up ahead of time when the planets were approaching and occurred on schedule when the planets were at their closest or farthest points. This observation demonstrated what we today know as the Doppler effect, the change in frequency of light or sound emitted by a moving object that in the astronomical world manifests as the so-called redshift , the shift towards "redder", longer wavelengths in objects speeding away from us. In a leap of intuition, Rømer determined that light was taking measurable time to travel from Io to Earth. 

Rømer used his observations to estimate the speed of light. Since the size of the solar system and Earth's orbit wasn't yet accurately known, argued a 1998 paper in the American Journal of Physics , he was a bit off. But at last, scientists had a number to work with. Rømer's calculation put the speed of light at about 124,000 miles per second (200,000 km/s).

In 1728, English physicist James Bradley based a new set of calculations on the change in the apparent position of stars caused by Earth's travels around the sun. He estimated the speed of light at 185,000 miles per second (301,000 km/s) — accurate to within about 1% of the real value, according to the American Physical Society .

Two new attempts in the mid-1800s brought the problem back to Earth. French physicist Hippolyte Fizeau set a beam of light on a rapidly rotating toothed wheel, with a mirror set up 5 miles (8 km) away to reflect it back to its source. Varying the speed of the wheel allowed Fizeau to calculate how long it took for the light to travel out of the hole, to the adjacent mirror, and back through the gap. Another French physicist, Leon Foucault, used a rotating mirror rather than a wheel to perform essentially the same experiment. The two independent methods each came within about 1,000 miles per second (1,609 km/s) of the speed of light.

Dr. Albert A. Michelson stands next to a large tube supported by wooden beams.

Another scientist who tackled the speed of light mystery was Poland-born Albert A. Michelson, who grew up in California during the state's gold rush period, and honed his interest in physics while attending the U.S. Naval Academy, according to the University of Virginia . In 1879, he attempted to replicate Foucault's method of determining the speed of light, but Michelson increased the distance between mirrors and used extremely high-quality mirrors and lenses. Michelson's result of 186,355 miles per second (299,910 km/s) was accepted as the most accurate measurement of the speed of light for 40 years, until Michelson re-measured it himself. In his second round of experiments, Michelson flashed lights between two mountain tops with carefully measured distances to get a more precise estimate. And in his third attempt just before his death in 1931, according to the Smithsonian's Air and Space magazine, he built a mile-long depressurized tube of corrugated steel pipe. The pipe simulated a near-vacuum that would remove any effect of air on light speed for an even finer measurement, which in the end was just slightly lower than the accepted value of the speed of light today. 

Michelson also studied the nature of light itself, wrote astrophysicist Ethan Siegal in the Forbes science blog, Starts With a Bang . The best minds in physics at the time of Michelson's experiments were divided: Was light a wave or a particle? 

Michelson, along with his colleague Edward Morley, worked under the assumption that light moved as a wave, just like sound. And just as sound needs particles to move, Michelson and Morley and other physicists of the time reasoned, light must have some kind of medium to move through. This invisible, undetectable stuff was called the "luminiferous aether" (also known as "ether"). 

Though Michelson and Morley built a sophisticated interferometer (a very basic version of the instrument used today in LIGO facilities), Michelson could not find evidence of any kind of luminiferous aether whatsoever. Light, he determined, can and does travel through a vacuum.

"The experiment — and Michelson's body of work — was so revolutionary that he became the only person in history to have won a Nobel Prize for a very precise non-discovery of anything," Siegal wrote. "The experiment itself may have been a complete failure, but what we learned from it was a greater boon to humanity and our understanding of the universe than any success would have been!"

Special relativity and the speed of light

Albert Einstein writing on a blackboard.

Einstein's theory of special relativity unified energy, matter and the speed of light in a famous equation: E = mc^2. The equation describes the relationship between mass and energy — small amounts of mass (m) contain, or are made up of, an inherently enormous amount of energy (E). (That's what makes nuclear bombs so powerful: They're converting mass into blasts of energy.) Because energy is equal to mass times the speed of light squared, the speed of light serves as a conversion factor, explaining exactly how much energy must be within matter. And because the speed of light is such a huge number, even small amounts of mass must equate to vast quantities of energy.

In order to accurately describe the universe, Einstein's elegant equation requires the speed of light to be an immutable constant. Einstein asserted that light moved through a vacuum, not any kind of luminiferous aether, and in such a way that it moved at the same speed no matter the speed of the observer. 

Think of it like this: Observers sitting on a train could look at a train moving along a parallel track and think of its relative movement to themselves as zero. But observers moving nearly the speed of light would still perceive light as moving away from them at more than 670 million mph. (That's because moving really, really fast is one of the only confirmed methods of time travel — time actually slows down for those observers, who will age slower and perceive fewer moments than an observer moving slowly.)

In other words, Einstein proposed that the speed of light doesn't vary with the time or place that you measure it, or how fast you yourself are moving. 

Therefore, objects with mass cannot ever reach the speed of light. If an object ever did reach the speed of light, its mass would become infinite. And as a result, the energy required to move the object would also become infinite: an impossibility.

That means if we base our understanding of physics on special relativity (which most modern physicists do), the speed of light is the immutable speed limit of our universe — the fastest that anything can travel. 

What goes faster than the speed of light?

Although the speed of light is often referred to as the universe's speed limit, the universe actually expands even faster. The universe expands at a little more than 42 miles (68 kilometers) per second for each megaparsec of distance from the observer, wrote astrophysicist Paul Sutter in a previous article for Space.com . (A megaparsec is 3.26 million light-years — a really long way.) 

In other words, a galaxy 1 megaparsec away appears to be traveling away from the Milky Way at a speed of 42 miles per second (68 km/s), while a galaxy two megaparsecs away recedes at nearly 86 miles per second (136 km/s), and so on. 

"At some point, at some obscene distance, the speed tips over the scales and exceeds the speed of light, all from the natural, regular expansion of space," Sutter explained. "It seems like it should be illegal, doesn't it?"

Special relativity provides an absolute speed limit within the universe, according to Sutter, but Einstein's 1915 theory regarding general relativity allows different behavior when the physics you're examining are no longer "local."

"A galaxy on the far side of the universe? That's the domain of general relativity, and general relativity says: Who cares! That galaxy can have any speed it wants, as long as it stays way far away, and not up next to your face," Sutter wrote. "Special relativity doesn't care about the speed — superluminal or otherwise — of a distant galaxy. And neither should you."

Does light ever slow down?

A sparkling diamond amongst dark coal-like rock.

Light in a vacuum is generally held to travel at an absolute speed, but light traveling through any material can be slowed down. The amount that a material slows down light is called its refractive index. Light bends when coming into contact with particles, which results in a decrease in speed.

For example, light traveling through Earth's atmosphere moves almost as fast as light in a vacuum, slowing down by just three ten-thousandths of the speed of light. But light passing through a diamond slows to less than half its typical speed, PBS NOVA reported. Even so, it travels through the gem at over 277 million mph (almost 124,000 km/s) — enough to make a difference, but still incredibly fast.

Light can be trapped — and even stopped — inside ultra-cold clouds of atoms, according to a 2001 study published in the journal Nature . More recently, a 2018 study published in the journal Physical Review Letters proposed a new way to stop light in its tracks at "exceptional points," or places where two separate light emissions intersect and merge into one.

Researchers have also tried to slow down light even when it's traveling through a vacuum. A team of Scottish scientists successfully slowed down a single photon, or particle of light, even as it moved through a vacuum, as described in their 2015 study published in the journal Science . In their measurements, the difference between the slowed photon and a "regular" photon was just a few millionths of a meter, but it demonstrated that light in a vacuum can be slower than the official speed of light. 

Can we travel faster than light?

— Spaceship could fly faster than light

— Here's what the speed of light looks like in slow motion

— Why is the speed of light the way it is?

Science fiction loves the idea of "warp speed." Faster-than-light travel makes countless sci-fi franchises possible, condensing the vast expanses of space and letting characters pop back and forth between star systems with ease. 

But while faster-than-light travel isn't guaranteed impossible, we'd need to harness some pretty exotic physics to make it work. Luckily for sci-fi enthusiasts and theoretical physicists alike, there are lots of avenues to explore.

All we have to do is figure out how to not move ourselves — since special relativity would ensure we'd be long destroyed before we reached high enough speed — but instead, move the space around us. Easy, right? 

One proposed idea involves a spaceship that could fold a space-time bubble around itself. Sounds great, both in theory and in fiction.

"If Captain Kirk were constrained to move at the speed of our fastest rockets, it would take him a hundred thousand years just to get to the next star system," said Seth Shostak, an astronomer at the Search for Extraterrestrial Intelligence (SETI) Institute in Mountain View, California, in a 2010 interview with Space.com's sister site LiveScience . "So science fiction has long postulated a way to beat the speed of light barrier so the story can move a little more quickly."

Without faster-than-light travel, any "Star Trek" (or "Star War," for that matter) would be impossible. If humanity is ever to reach the farthest — and constantly expanding — corners of our universe, it will be up to future physicists to boldly go where no one has gone before.

Additional resources

For more on the speed of light, check out this fun tool from Academo that lets you visualize how fast light can travel from any place on Earth to any other. If you’re more interested in other important numbers, get familiar with the universal constants that define standard systems of measurement around the world with the National Institute of Standards and Technology . And if you’d like more on the history of the speed of light, check out the book " Lightspeed: The Ghostly Aether and the Race to Measure the Speed of Light " (Oxford, 2019) by John C. H. Spence.

Aristotle. “On Sense and the Sensible.” The Internet Classics Archive, 350AD. http://classics.mit.edu/Aristotle/sense.2.2.html .

D’Alto, Nick. “The Pipeline That Measured the Speed of Light.” Smithsonian Magazine, January 2017. https://www.smithsonianmag.com/air-space-magazine/18_fm2017-oo-180961669/ .

Fowler, Michael. “Speed of Light.” Modern Physics. University of Virginia. Accessed January 13, 2022. https://galileo.phys.virginia.edu/classes/252/spedlite.html#Albert%20Abraham%20Michelson .

Giovannini, Daniel, Jacquiline Romero, Václav Potoček, Gergely Ferenczi, Fiona Speirits, Stephen M. Barnett, Daniele Faccio, and Miles J. Padgett. “Spatially Structured Photons That Travel in Free Space Slower than the Speed of Light.” Science, February 20, 2015. https://www.science.org/doi/abs/10.1126/science.aaa3035 .

Goldzak, Tamar, Alexei A. Mailybaev, and Nimrod Moiseyev. “Light Stops at Exceptional Points.” Physical Review Letters 120, no. 1 (January 3, 2018): 013901. https://doi.org/10.1103/PhysRevLett.120.013901 . 

Hazen, Robert. “What Makes Diamond Sparkle?” PBS NOVA, January 31, 2000. https://www.pbs.org/wgbh/nova/article/diamond-science/ . 

“How Long Is a Light-Year?” Glenn Learning Technologies Project, May 13, 2021. https://www.grc.nasa.gov/www/k-12/Numbers/Math/Mathematical_Thinking/how_long_is_a_light_year.htm . 

American Physical Society News. “July 1849: Fizeau Publishes Results of Speed of Light Experiment,” July 2010. http://www.aps.org/publications/apsnews/201007/physicshistory.cfm . 

Liu, Chien, Zachary Dutton, Cyrus H. Behroozi, and Lene Vestergaard Hau. “Observation of Coherent Optical Information Storage in an Atomic Medium Using Halted Light Pulses.” Nature 409, no. 6819 (January 2001): 490–93. https://doi.org/10.1038/35054017 . 

NIST. “Meet the Constants.” October 12, 2018. https://www.nist.gov/si-redefinition/meet-constants . 

Ouellette, Jennifer. “A Brief History of the Speed of Light.” PBS NOVA, February 27, 2015. https://www.pbs.org/wgbh/nova/article/brief-history-speed-light/ . 

Shea, James H. “Ole Ro/Mer, the Speed of Light, the Apparent Period of Io, the Doppler Effect, and the Dynamics of Earth and Jupiter.” American Journal of Physics 66, no. 7 (July 1, 1998): 561–69. https://doi.org/10.1119/1.19020 . 

Siegel, Ethan. “The Failed Experiment That Changed The World.” Forbes, April 21, 2017. https://www.forbes.com/sites/startswithabang/2017/04/21/the-failed-experiment-that-changed-the-world/ . 

Stern, David. “Rømer and the Speed of Light,” October 17, 2016. https://pwg.gsfc.nasa.gov/stargaze/Sun4Adop1.htm . 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Vicky Stein

Vicky Stein is a science writer based in California. She has a bachelor's degree in ecology and evolutionary biology from Dartmouth College and a graduate certificate in science writing from the University of California, Santa Cruz (2018). Afterwards, she worked as a news assistant for PBS NewsHour, and now works as a freelancer covering anything from asteroids to zebras. Follow her most recent work (and most recent pictures of nudibranchs) on Twitter. 

China to launch sample-return mission to the moon's far side on May 3

Satellites watch as 4th global coral bleaching event unfolds (image)

SpaceX vet's startup Portal Space Systems comes out of stealth mode

Most Popular

  • 2 Scientists unravel mysteries of gamma-ray bursts — the universe's most powerful explosions
  • 3 SpaceX's Starship could help this start-up beam clean energy from space. Here's how (video)
  • 4 Evidence for Planet 9 found in icy bodies sneaking past Neptune
  • 5 NASA crew announced for simulated Mars mission next month

does light travel at a constant speed

Subscribe or renew today

Every print subscription comes with full digital access

Science News

Speed of light not so constant after all.

Pulse structure can slow photons, even in a vacuum

laser light

SHIFTING SPEEDS  Even in vacuum conditions, light can move slower than its maximum speed depending on the structure of its pulses. The finding could be important for physicists studying extremely short light pulses.

Jeff Keyzer/Flickr ( CC BY-SA 2.0 )

Share this:

By Andrew Grant

January 17, 2015 at 6:00 pm

Light doesn’t always travel at the speed of light. A new experiment reveals that focusing or manipulating the structure of light pulses reduces their speed, even in vacuum conditions.

A paper reporting the research, posted online at arXiv.org and accepted for publication, describes hard experimental evidence that the speed of light, one of the most important constants in physics, should be thought of as a limit rather than an invariable rate for light zipping through a vacuum.

“It’s very impressive work,” says Robert Boyd, an optical physicist at the University of Rochester in New York. “It’s the sort of thing that’s so obvious, you wonder why you didn’t think of it first.”

Researchers led by optical physicist Miles Padgett at the University of Glasgow demonstrated the effect by racing photons that were identical except for their structure. The structured light consistently arrived a tad late. Though the effect is not recognizable in everyday life and in most technological applications, the new research highlights a fundamental and previously unappreciated subtlety in the behavior of light.

The speed of light in a vacuum, usually denoted c, is a fundamental constant central to much of physics, particularly Einstein’s theory of relativity. While measuring c was once considered an important experimental problem, it is now simply specified to be 299,792,458 meters per second, as the meter itself is defined in terms of light’s vacuum speed. Generally if light is not traveling at c it is because it is moving through a material. For example, light slows down when passing through glass or water.

Padgett and his team wondered if there were fundamental factors that could change the speed of light in a vacuum. Previous studies had hinted that the structure of light could play a role. Physics textbooks idealize light as plane waves, in which the fronts of each wave move in parallel, much like ocean waves approaching a straight shoreline. But while light can usually be approximated as plane waves, its structure is actually more complicated. For instance, light can converge upon a point after passing through a lens. Lasers can shape light into concentrated or even bull’s-eye–shaped beams.

The researchers produced pairs of photons and sent them on different paths toward a detector. One photon zipped straight through a fiber. The other photon went through a pair of devices that manipulated the structure of the light and then switched it back. Had structure not mattered, the two photons would have arrived at the same time. But that didn’t happen. Measurements revealed that the structured light consistently arrived several micrometers late per meter of distance traveled.

“I’m not surprised the effect exists,” Boyd says. “But it’s surprising that the effect is so large and robust.”

Greg Gbur, an optical physicist at the University of North Carolina at Charlotte, says the findings won’t change the way physicists look at the aura emanating from a lamp or flashlight. But he says the speed corrections could be important for physicists studying extremely short light pulses.

More Stories from Science News on Physics

A lattice of gold-colored spheres, with each sphere connected by lines to six of its neighbors

Scientists developed a sheet of gold that’s just one atom thick

An illustration of atoms in an altermagnet shows a grid of alternating blue and purple shapes, rotated with respect to one another.

Newfound ‘altermagnets’ shatter the magnetic status quo 

A woman is pictured in front of three overlapping circles, representing the three stars of an alien star system, in an image from the Netflix show "3 Body Problem."

Separating science fact from fiction in Netflix’s ‘3 Body Problem’ 

A split illustration shows a thorium nucleus alongside a clock.

Physicists take a major step toward making a nuclear clock

About a dozen people with their backs turned to the camera watch the August 21, 2017 eclipse. The people are looking up into the sky at a white sun with a black dot in the center. The sun is at the top center of the image. The sky is dark blue gradually darkening to midnight at the upper corners of the picture. The horizon is yellow and orange as if at sunset. Several people are taking pictures with cell phones held aloft. One person at the center right in the back of the group wears a red hooded sweatshirt with an Adidas logo on the back and a skirt.

During a total solar eclipse, some colors really pop. Here’s why

A tiny and portable gravimeter can sense changes in the Earth's gravitational field

A teeny device can measure subtle shifts in Earth’s gravitational field

does light travel at a constant speed

Timbre can affect what harmony is music to our ears

A photograph of a diamond anvil used to crush materials at high pressures and ultracold temperatures.

50 years ago, superconductors were warming up

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

January 19, 1998

Why isn't the speed of light infinite?

Stephen Reucroft and John Swain, professors of physics at Northeastern University in Boston, Mass, provided the following explanation:

The common experience of turning on a light switch certainly shows that light travels very quickly. But careful experiments reveal that it travels at a finite speed. This speed, which we call "c," is measured to be 300,000,000 meters per second.

The speed of light is strange in that it has the same value independent of the relative velocity between the source and the observer. This fact is an experimental one that can only make sense if relative motion changes the relationship between space and time intervals to keep the distance covered by light per unit time the same for all observers.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

The fact that space and time must get mixed up to keep the speed of light constant implies that, in some sense, space and time must be the same, despite our habit of measuring space in meters and time in seconds. But if time and space are similar to the extent that they can be converted one into the other, then one needs some quantity to convert the units--namely, something measured in meters per second that can be used to multiply seconds of time to get meters of space. That something, the universal conversion factor, is the speed of light. The reason that it is limited is simply the fact that a finite amount of space is equivalent to a finite amount of time.

Another explanation of light's finite nature can be obtained from thinking about what we mean by light itself. Light, by definition, is an electromagnetic wave, a propagating disturbance in space and time that carries information about the acceleration of charges.

Were there an infinite value for the speed of light, light itself would not exist at all. Mathematically, the wave equation that describes light as an electromagnetic wave would lose its time-dependence.

In physical terms, an electromagnetic wave arises due to the finite time it takes for news of the change of location of an accelerated charge to arrive at a distant point. Think of an electric charge as being like a hedgehog with flexible rubber spikes going out to infinity in all directions. These spikes represent the electric field lines, the lines along which a test charge would move.

If the charge is jerked, the segments of the spikes close to the charge will move, but those farther out will still point in their original directions. The result is that each spike will get a kink that moves out to infinity. This kink relays the news that the charge has moved to the distant parts of the spikes and corresponds to an electromagnetic wave. If the wave moves infinitely fast, it is as if it were not there at all; the spikes are infinitely stiff and the news gets out to everywhere without any seeming kinks. In other words, there would be no electromagnetic wave, and thus no light.

The previous two arguments are two slightly different ways to say that if you think light is a wave, then it has to be something that propagates and takes time to go from one point to another. In other words, it has to travel at a finite speed. Infinite speed of propagation is an instantaneous magical change in things everywhere all at once, and not a wave at all!

Speed of Light May Not Be Constant, Physicists Say

abstract night acceleration speed, motion.

The speed of light is constant, or so textbooks say. But some scientists are exploring the possibility that this cosmic speed limit changes, a consequence of the nature of the vacuum of space.

The definition of the speed of light has some broader implications for fields such as cosmology and astronomy, which assume a stable velocity for light over time. For instance, the speed of light comes up when measuring the fine structure constant (alpha), which defines the strength of the electromagnetic force. And a varying light speed would change the strengths of molecular bonds and the density of nuclear matter itself.

A non-constant speed of light could mean that estimates of the size of the universe might be off. (Unfortunately, it won't necessarily mean we can travel faster than light , because the effects of physics theories such as relativity are a consequence of light's velocity). [ 10 Implications of Faster-Than-Light Travel ]

Two papers, published in the European Physics Journal D in March, attempt to derive the speed of light from the quantum properties of space itself. Both propose somewhat different mechanisms, but the idea is that the speed of light might change as one alters assumptions about how elementary particles interact with radiation. Both treat space as something that isn't empty, but a great big soup of virtual particles that wink in and out of existence in tiny fractions of a second.

Cosmic vacuum and light speed

The first, by lead author Marcel Urban of the Université du Paris-Sud, looks at the cosmic vacuum, which is often assumed to be empty space. The laws of quantum physics, which govern subatomic particles and all things very small,  say that the vacuum of space is actually full of fundamental particles like quarks, called "virtual" particles. These matter particles, which are always paired up with their appropriate antiparticle counterpart, pop into existence and almost immediately collide. When matter and antimatter particles touch, they annihilate each other.

Photons of light, as they fly through space, are captured and re-emitted by these virtual particles. Urban and his colleagues propose that the energies of these particles — specifically the amount of charge they carry — affect the speed of light. Since the amount of energy a particle will have at the time a photon hits it will be essentially random, the effect on how fast photons move should vary too.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

As such, the amount of time the light takes to cross a given distance should vary as the square root of that distance, though the effect would be very tiny — on the order of 0.05 femtoseconds for every square meter of vacuum. A femtosecond is a millionth of a billionth of a second. (The speed of light has been measured over the last century to high precision, on the order of parts per billion, so it is pretty clear that the effect has to be small.)

To find this tiny fluctuation, the researchers say, one could measure how light disperses at long distances. Some astronomical phenomena, such as gamma-ray bursts , produce pulses of radiation from far enough away that the fluctuations could be detected. The authors also propose using lasers bounced between mirrors placed about 100 yards apart, with a light beam bouncing between them multiple times, to seek those small changes.

Particle species and light speed

The second paper proposes a different mechanism but comes to the same conclusion that light speed changes. In that case, Gerd Leuchs and Luis Sánchez-Soto, from the Max Planck Institute for the Physics of Light in Erlangen, Germany, say that the number of species of elementary particle that exist in the universe may be what makes the speed of light what it is.

Leuchs and Sanchez-Soto say that there should be, by their calculations, on the order of 100 "species" of particle that have charges. The current law governing particle physics, the Standard Model, identifies nine: the electron, muon, tauon, the six kinds of quark , photons and the W-boson. [ Wacky Physics: The Coolest Little Particles in Nature ]

The charges of all these particles are important to their model, because all of them have charges. A quantity called impedance depends on the sum of those charges. The impedance in turn depends on the permittivity of the vacuum, or how much it resists electric fields, as well as its permeability, or how well it supports magnetic fields. Light waves are made up of both an electric and magnetic wave, so changing those quantities (permittivity and permeability) will change the measured speed of light.

"We have calculated the permittivity and permeability of the vacuum as caused by those ephemeral virtual unstable elementary particles," Soto-Sanchez wrote in an email to LiveScience. "It turns out, however, from such a simple model one can discern that those constants contain essentially equal contributions of the different types of electrically charged particle-antiparticle pairs: both, the ones known and those so far unknown to us."

Both papers say that light interacts with virtual particle-antiparticle pairs. In Leuchs' and Sanchez-Soto's model, the impedance of the vacuum (which would speed up or slow down the speed of light) depends on the density of the particles. The impedance relates to the ratio of electric fields to magnetic fields in light; every light wave is made up of both kinds of field, and its measured value, along with the permittivity of space to magnetic fields, governs the speed of light.

Some scientists are a bit skeptical, though. Jay Wacker, a particle physicist at the SLAC National Accelerator Laboratory, said he wasn't confident about the mathematical techniques used, and that it seemed in both cases the scientists weren't applying the mathematical tools in the way that most would. "The proper way to do this is with the Feynman diagrams," Wacker said. "It's a very interesting question [the speed of light]," he added, but the methods used in these papers are probably not sufficient to investigate it.

The other issue is that if there really are a lot of other particles beyond what's in the Standard Model, then this theory needs some serious revision. But so far its predictions have been borne out, notably with the discovery of the Higgs boson . This doesn't mean there aren't any more particles to be found — but if they are out there they're above the energies currently achievable with particle accelerators, and therefore pretty heavy, and it's possible that their effects would have shown up elsewhere.

Follow us @livescience , Facebook  & Google+ . Original article on LiveScience.com .

Jesse Emspak

Tweak to Schrödinger's cat equation could unite Einstein's relativity and quantum mechanics, study hints

Scientists are one step closer to knowing the mass of ghostly neutrinos — possibly paving the way to new physics

Villa near Mount Vesuvius may be where Augustus, Rome's 1st emperor, died

Most Popular

  • 2 James Webb telescope confirms there is something seriously wrong with our understanding of the universe
  • 3 Quantum computing breakthrough could happen with just hundreds, not millions, of qubits using new error-correction system
  • 4 6G speeds hit 100 Gbps in new test — 500 times faster than average 5G cellphones
  • 5 Why do people hear their names being called in the woods?
  • 2 6G speeds hit 100 Gbps in new test — 500 times faster than average 5G cellphones
  • 3 Deepest blue hole in the world discovered, with hidden caves and tunnels believed to be inside
  • 4 Tweak to Schrödinger's cat equation could unite Einstein's relativity and quantum mechanics, study hints
  • 5 2 plants randomly mated up to 1 million years ago to give rise to one of the world's most popular drinks

does light travel at a constant speed

  • Subscribe to BBC Science Focus Magazine
  • Previous Issues
  • Future tech
  • Everyday science
  • Planet Earth
  • Newsletters

Why is the speed of light constant?

Unless it's travelling through a vacuum, the speed of light isn't always constant. It depends on the medium the light is travelling through.

Robert Matthews

Asked by: Alan Edgington, Ramsgate

It isn't. When it passes through some mediums, such as water, it slows down considerably. In the case of diamond, its speed is cut by over 50 per cent. But according to Einstein's Special Theory of Relativity, the speed of light in the vaccum of empty space is said to be the same for all observers, at just short of 300,000km/s.

This is undoubtedly weird, as every other speed is measured relative to something else. For example, a train can move at 150km/h relative to someone on a platform, but to the train's passengers its speed is pretty much zero. The speed of light is no ordinary speed, however: it's a universal constant that emerges from the laws of physics.

Specifically, it's the speed at which electromagnetic waves travel through the vacuum of space - and its value can be predicted by equations unifying our understanding of electricity and magnetism, as discovered over 150 years ago by the Scottish physicist and mathematician James Clerk Maxwell.

Subscribe to BBC Focus magazine for fascinating new Q&As every month and follow @sciencefocusQA on Twitter for your daily dose of fun science facts.

Share this article

does light travel at a constant speed

  • Terms & Conditions
  • Privacy policy
  • Cookies policy
  • Code of conduct
  • Magazine subscriptions
  • Manage preferences

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

What Is the Speed of Light?

Speed of Light

The speed of light is the rate at which light travels. The speed of light in a vacuum is a constant value that is denoted by the letter c and is defined as exactly 299,792,458 meters per second. Visible light , other electromagnetic radiation, gravity waves, and other massless particles travel at c. Matter , which has mass, can approach the speed of light, but never reach it.

Value for the Speed of Light in Different Units

Here are values for the speed of light in various units:

  • 299,792,458 meters per second ( exact number )
  • 299,792 kilometers per second (rounded)
  • 3×10 8 m/s (rounded)
  • 186,000 miles per second (rounded)
  • 671,000,000 miles per hour (rounded)
  • 1,080,000,000 kilometers per hour (rounded)

Is the Speed of Light Really Constant?

The speed of light in a vacuum is a constant. However, scientists are exploring whether the speed of light has changed over time.

Also, the rate at which light travels changes as it passes through a medium. The index of refraction describes this change. For example, the index of refraction of water is 1.333, which means light travels 1.333 times slower in water than in a vacuum. The index of refraction of a diamond is 2.417. A diamond slows the speed of light by more than half its speed in a vacuum.

How to Measure the Speed of Light

One way of measuring the speed of light uses great distances, such as distant points on the Earth or known distances between the Earth and astronomical objects. For example, you can measure the speed of light by measuring the time it takes for light to travel from a light source to a distant mirror and back again. The other way of measuring the speed of light is solving for c in equations. Now that the speed of light is defined, it is fixed rather than measured. Measuring the speed of light today indirectly measures the length of the meter, rather than c .

In 1676, Danish astronomer Ole Rømer discovered light travels at a speed by studying the movement of Jupiter’s moon Io. Prior to this, it seemed light propagated instantaneously. For example, you see a lightning strike immediately, but don’t hear thunder until after the event . So, Rømer’s finding showed light takes time to travel, but scientists did not know the speed of light or whether it was constant. In 1865, James Clerk Maxwell proposed that light was an electromagnetic wave that travelled at a speed c . Albert Einstein suggested c was a constant and that it did not change according to the frame of reference of the observer or any motion of a light source. In other words, Einstein suggested the speed of light is invariant . Since then, numerous experiments have verified the invariance of c .

Is It Possible to Go Faster Than Light?

The upper speed limit for massless particles is c . Objects that have mass cannot travel at the speed of light or exceed it. Among other reasons, traveling at c gives an object a length of zero and infinite mass. Accelerating a mass to the speed of light requires infinite energy. Furthermore, energy, signals, and individual photos cannot travel faster than c . At first glance, quantum entanglement appears to transmit information faster than c . When two particles are entangled, changing the state of one particle instantaneously determines the state of the other particle, regardless of the distance between them. But, information cannot be transmitted instantaneously (faster than c ) because it isn’t possible to control the initial quantum state of the particle when it is observed.

However, faster-than-light speeds appear in physics. For example, the phase velocity of x-rays through glass often exceeds c. However, the information isn’t conveyed by the waves faster than the speed of light. Distant galaxies appear to move away from Earth faster than the speed of light (outside a distance called the Hubble sphere), but the motion isn’t due to the galaxies traveling through space. Instead, space itself it expanding. So again, no actual movement faster than c occurs.

While it isn’t possible to go faster than the speed of light, it doesn’t necessarily mean warp drive or other faster-than-light travel is impossible. The key to going faster than the speed of light is to change space-time. Ways this might happen include tunneling using wormholes or stretching space-time into a “warp bubble” around a spacecraft. But, so far these theories don’t have practical applications.

  • Brillouin, L. (1960). Wave Propagation and Group Velocity. Academic Press.
  • Ellis, G.F.R.; Uzan, J.-P. (2005). “‘c’ is the speed of light, isn’t it?”. American Journal of Physics . 73 (3): 240–27. doi: 10.1119/1.1819929
  • Helmcke, J.; Riehle, F. (2001). “Physics behind the definition of the meter”. In Quinn, T.J.; Leschiutta, S.; Tavella, P. (eds.). Recent advances in metrology and fundamental constants . IOS Press. p. 453. ISBN 978-1-58603-167-1.
  • Newcomb, S. (1886). “The Velocity of Light”. Nature . 34 (863): 29–32. doi: 10.1038/034029c0
  • Uzan, J.-P. (2003). “The fundamental constants and their variation: observational status and theoretical motivations”. Reviews of Modern Physics . 75 (2): 403. doi: 10.1103/RevModPhys.75.403

Related Posts

Universe Today

Universe Today

Space and astronomy news

does light travel at a constant speed

What is the Speed of Light?

Since ancient times, philosophers and scholars have sought to understand light. In addition to trying to discern its basic properties (i.e. what is it made of – particle or wave, etc.) they have also sought to make finite measurements of how fast it travels. Since the late-17th century, scientists have been doing just that, and with increasing accuracy.

In so doing, they have gained a better understanding of light’s mechanics and the important role it plays in physics, astronomy and cosmology. Put simply, light moves at incredible speeds and is the fastest moving thing in the Universe. Its speed is considered a constant and an unbreakable barrier, and is used as a means of measuring distance. But just how fast does it travel?

Speed of Light ( c ):

Light travels at a constant speed of 1,079,252,848.8 (1.07 billion) km per hour. That works out to 299,792,458 m/s, or about 670,616,629 mph (miles per hour). To put that in perspective, if you could travel at the speed of light, you would be able to circumnavigate the globe approximately seven and a half times in one second. Meanwhile, a person flying at an average speed of about 800 km/h (500 mph), would take over 50 hours to circle the planet just once.

Illustration showing the distance between Earth and the Sun. Credit: LucasVB/Public Domain

To put that into an astronomical perspective, the average distance from the Earth to the Moon is 384,398.25 km (238,854 miles ). So light crosses that distance in about a second. Meanwhile, the average distance from the Sun to the Earth is ~149,597,886 km (92,955,817 miles), which means that light only takes about 8 minutes to make that journey.

Little wonder then why the speed of light is the metric used to determine astronomical distances. When we say a star like Proxima Centauri is 4.25 light years away, we are saying that it would take – traveling at a constant speed of 1.07 billion km per hour (670,616,629 mph) – about 4 years and 3 months to get there. But just how did we arrive at this highly specific measurement for “light-speed”?

History of Study:

Until the 17th century, scholars were unsure whether light traveled at a finite speed or instantaneously. From the days of the ancient Greeks to medieval Islamic scholars and scientists of the early modern period, the debate went back and forth. It was not until the work of Danish astronomer Øle Rømer (1644-1710) that the first quantitative measurement was made.

In 1676, Rømer observed that the periods of Jupiter’s innermost moon Io appeared to be shorter when the Earth was approaching Jupiter than when it was receding from it. From this, he concluded that light travels at a finite speed, and estimated that it takes about 22 minutes to cross the diameter of Earth’s orbit.

Prof. Albert Einstein uses the blackboard as he delivers the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in the auditorium of the Carnegie Institue of Technology Little Theater at Pittsburgh, Pa., on Dec. 28, 1934. Using three symbols, for matter, energy and the speed of light respectively, Einstein offers additional proof of a theorem propounded by him in 1905 that matter and energy are the same thing in different forms. (AP Photo)

Christiaan Huygens used this estimate and combined it with an estimate of the diameter of the Earth’s orbit to obtain an estimate of 220,000 km/s. Isaac Newton also spoke about Rømer’s calculations in his seminal work Opticks (1706). Adjusting for the distance between the Earth and the Sun, he calculated that it would take light seven or eight minutes to travel from one to the other. In both cases, they were off by a relatively small margin.

Later measurements made by French physicists Hippolyte Fizeau (1819 – 1896) and Léon Foucault (1819 – 1868) refined these measurements further – resulting in a value of 315,000 km/s (192,625 mi/s) . And by the latter half of the 19th century, scientists became aware of the connection between light and electromagnetism.

This was accomplished by physicists measuring electromagnetic and electrostatic charges, who then found that the numerical value was very close to the speed of light (as measured by Fizeau). Based on his own work, which showed that electromagnetic waves propagate in empty space, German physicist Wilhelm Eduard Weber proposed that light was an electromagnetic wave.

The next great breakthrough came during the early 20th century/ In his 1905 paper, titled “ On the Electrodynamics of Moving Bodies”, Albert Einstein asserted that the speed of light in a vacuum, measured by a non-accelerating observer, is the same in all inertial reference frames and independent of the motion of the source or observer.

A laser shining through a glass of water demonstrates how many changes in speed it undergoes - from 186,222 mph in air to 124,275 mph through the glass. It speeds up again to 140,430 mph in water, slows again through glass and then speeds up again when leaving the glass and continuing through the air. Credit: Bob King

Using this and Galileo’s principle of relativity as a basis, Einstein derived the Theory of Special Relativity , in which the speed of light in vacuum ( c ) was a fundamental constant. Prior to this, the working consensus among scientists held that space was filled with a “luminiferous aether” that was responsible for its propagation – i.e. that light traveling through a moving medium would be dragged along by the medium.

This in turn meant that the measured speed of the light would be a simple sum of its speed through the medium plus the speed of that medium. However, Einstein’s theory effectively  made the concept of the stationary aether useless and revolutionized the concepts of space and time.

Not only did it advance the idea that the speed of light is the same in all inertial reference frames, it also introduced the idea that major changes occur when things move close the speed of light. These include the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer (i.e. time dilation, where time slows as the speed of light approaches).

His observations also reconciled Maxwell’s equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations by doing away with extraneous explanations used by other scientists, and accorded with the directly observed speed of light.

During the second half of the 20th century, increasingly accurate measurements using laser inferometers and cavity resonance techniques would further refine estimates of the speed of light. By 1972, a group at the US National Bureau of Standards in Boulder, Colorado, used the laser inferometer technique to get the currently-recognized value of 299,792,458 m/s .

Role in Modern Astrophysics:

Einstein’s theory that the speed of light in vacuum is independent of the motion of the source and the inertial reference frame of the observer has since been consistently confirmed by many experiments. It also sets an upper limit on the speeds at which all massless particles and waves (which includes light) can travel in a vacuum.

One of the outgrowths of this is that cosmologists now treat space and time as a single, unified structure known as spacetime – in which the speed of light can be used to define values for both (i.e. “lightyears”, “light minutes”, and “light seconds”). The measurement of the speed of light has also become a major factor when determining the rate of cosmic expansion.

Beginning in the 1920’s with observations of Lemaitre and Hubble, scientists and astronomers became aware that the Universe is expanding from a point of origin. Hubble also observed that the farther away a galaxy is, the faster it appears to be moving. In what is now referred to as the Hubble Parameter , the speed at which the Universe is expanding is calculated to 68 km/s per megaparsec.

This phenomena, which has been theorized to mean that some galaxies could actually be moving faster than the speed of light , may place a limit on what is observable in our Universe. Essentially, galaxies traveling faster than the speed of light would cross a “cosmological event horizon”, where they are no longer visible to us.

Also, by the 1990’s, redshift measurements of distant galaxies showed that the expansion of the Universe has been accelerating for the past few billion years. This has led to theories like “ Dark Energy “, where an unseen force is driving the expansion of space itself instead of objects moving through it (thus not placing constraints on the speed of light or violating relativity).

Along with special and general relativity, the modern value of the speed of light in a vacuum has gone on to inform cosmology, quantum physics, and the Standard Model of particle physics. It remains a constant when talking about the upper limit at which massless particles can travel, and remains an unachievable barrier for particles that have mass.

Perhaps, someday, we will find a way to exceed the speed of light. While we have no practical ideas for how this might happen, the smart money seems to be on technologies that will allow us to circumvent the laws of spacetime, either by creating warp bubbles (aka. the Alcubierre Warp Drive ), or tunneling through it (aka. wormholes ).

Until that time, we will just have to be satisfied with the Universe we can see, and to stick to exploring the part of it that is reachable using conventional methods.

We have written many articles about the speed of light for Universe Today. Here’s How Fast is the Speed of Light? , How are Galaxies Moving Away Faster than Light? , How Can Space Travel Faster than the Speed of Light? , and Breaking the Speed of Light .

Here’s a cool calculator that lets you convert many different units for the speed of light , and here’s a relativity calculator , in case you wanted to travel nearly the speed of light.

Astronomy Cast also has an episode that addresses questions about the speed of light – Questions Show: Relativity, Relativity, and more Relativity .

  • Wikipedia – Speed of Light
  • The Physics of the Universe – Speed of Light and the Principle of Relativity
  • NASA – What is the Speed of Light?
  • Galileo and Einstein – The Speed of Light

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)

28 Replies to “What is the Speed of Light?”

This was a really good article, Frasier. Nice review of the history, and broken down in a way regular people can understand. Great job.

Travel Light (October, 2012 – Pat Lueck)

They are born travelers… these little photons, Zipping away from their creation.

Weighing nothing, it takes nothing to speed them on their way

They don’t dally, they don’t dither. Choosing the most likely path, guided by quantum probability.

Straight across the universe, pausing only for an observation, they carry past and future within.

Oh, little photons… If only we could follow you… see your trajectory.

To you, your universe wide trip is just a “timeless blip,” no time, no wait, just zip!

The great mystery.

The photon begs the question:

What creates your cosmic speed limit? What universal traffic cop waves you through at such a constant rate?

Newly dedicated to Neil Degrasse Tyson

Thanks, I liked your piece very much.

Thanks for this article Frasier, and for helping my uneducated and average intelligence brain / mind obtain at least the tiniest inkling of understanding regarding light and the concept of spacetime.

I am now left thinking about the source of light and where it originates from, so will have to do some homework I guess. 🙂

If you understand light speed, you will understand why this makes sense: Why can’t you travel faster than the speed of light? Because you can’t travel slower than the speed of light.

Fascinated by all the comments here. Am I right in thinking that there may be space in the expanding universe that is without light…

It’s kind of funny. I have watched any number of programs and read numerous books on Einstein’s theories, as well as taking in similar material on the universe, light, space travel, etc. I ‘get’ the limitations of the energy involved trying to move mass closer and closer to the speed of light, but one thing I’ve always asked myself, and yet to see explained, is what actually limits the speed of light. I mean, photons actually have no mass, right, so what is the speed limiter, the breaking mechanism, that says to a photon “hey buddy, that’s it for you, 186,000 miles per second is your limit.” In a vacuum, with no mass, shouldn’t the speed of light in theory be infinite, even though I obviously know that’s not the case? What am I missing? This article is a case in point. It talks about the science involved in nailing down the exact speed, and goes to great lengths to describe Einstein’s theories on how light always remains a constant, contrary to former thoughts on the matter. But nowhere does it state WHY it’s set at that particular constant. Why not 90,000 miles per second, or 300,000 miles?

I, too have wondered about this for a long, long time. See my little poem prior to this post. For many years I believed that the presence of an “ether” was firmly dismissed. However, my amateur studies of “space..” have led me to believe that “space” HAS an ether-like property. Fields? Quantum Nature of space? Interaction with dark energy? Very confusing. I have read that “fields” (one for each particle.. !) exist in space, that the wave-like nature of light requires interaction with ‘something,’ and that the energy ‘field’ at every point in space acts like an ether, etc, etc.

I plan to read a lot this winter and take some serious notes. I am NOT a mathematician, but I have a keen mind for analogy creation. Teacher.

Basically, c is what it is because the electric permittivity and magnetic permeability of free space have the specific values that they do.

@timbo59 Your question boils down to: Why does 1 = 1?

The best answer I can give is found in “Beyond Einstein: non-local physics” by Brian Fraser (2015) which states: “And so we discover that the Universe not only has built in mathematics (enough of a mystery), it also has built in unit quantities.” Apparently, all fundamental equations in physics reduce to 1 = 1. The examples given in the article include Newton’s gravitation, Einstein’s mass-energy relation, and the gamma correction factor.

The free 22 page paper can be downloaded from: http://scripturalphysics.org/4v4a/BeyondEinstein.html The .html file gives a link to the .pdf file but the former has additional information, and many more links and insights.

First let me start by saying this article was a great read. Thank you for writing and posting it. I’m no scientist, but in my mind it seems as though if we could somehow capture light we could use it to propel an object. Does light exert a force on an object it runs into? That is a real question, to which I have no answer. If it does then if a large enough object that had sufficiently low mass was placed in front of a light in a vacuum it would move it right? Again, I’m not a scientist, I don’t profess to understand any of this, they are just questions from a simple mind. Thanks.

Light absolutely does exert a force on objects. Though they have zero invariant mass, photons do carry momentum, and can transfer it in interactions with other objects. This is called ‘radiation pressure’, and is the entire basis for the design of solar sails.

Minor details to fix: in picture – mps and not mph.

This is a good article but thee is no smart money on circumventing the speed of light. That is the most immutable law of this universe. Or perhaps you could suggest that dark energy and dark matter are those moving through our universe at supra-C?

What do “Black Holes” and “Dark Matter” have in common? Both of them are indicative that light changes into a form which is neither matter or light and/or evolves into either matter or light in gradations based upon the physical environment in which it is found. Thus, light might not escape “Black Holes” because of the intense gravity in the same but because light, itself, has been altered into another physical form because of the physical environment of the “black hole”, itself. Thus, the preponderance of “dark matter” in the Universe might be explained in this same context. The speed of light, the expansion of the universe, and the “big bang” might, also, be explained in light of the aforementioned.

Good article. There is one aspect of the speed of light that is rarely if ever discussed and that is why can’t rest matter be accelerated, which isn’t the equivalent of space expansion, beyond the speed of light. It turns out that its due to the time dilation effect that Einstein described with the famous Lorentz Transformation. You see momentum is conveyed through force carriers which are field photons which move at the speed of light. As a body is accelerated the path of the force carriers to convey momentum are lengthen which lowers the rate of increased velocity per unit of time(seconds) from acceleration. As the body is accelerated closer to the speed of light the force carrier paths are so long that there comes a point where the rate of velocity increase is very very small. Ultimately the force carrier paths get stretched so long that a body never reaches the speed of light but can only get close to it.

http://vixra.org/pdf/1303.0201v1.pdf Invariance of the speed of light in free space.

Although this was a good synopsis of the conventional view of light, there are a few points that need to be made in understanding the actual physical mechanism responsible for its velocity. Actually, photons do have a finite, though miniscule, mass depending on their specific energy. The definition of zero mass was given when atomic electron orbital transitions became too cumbersome in calculating atomic mass . The “negligible” photon mass could be eliminated, simplifying the atomic mass calculations Also, antenna reception of EM waves should clarify how the dual charges are inherent in photons. These rotating charges average to zero charge per cycle, but the dynamics of the photon depend on the interaction of these charges. A finding at the LANL plasma research facility was announced at the Los Alamos International Atomic Physics Summerschool class in 1989 that opposite charges interact at right angles, inducing a spin which keeps the charges at a specific distance when balanced against the attraction of opposite charges. Equal charges (with equal finite mass) would perfectly balance, resulting in a specific wavelength depending on the photon energy.

Photons have zero invariant mass, at least as far as theory and experiment can tell (well, experiment can only really set an upper limit, of course, but is consistent with it being vanishingly small).

Tach One is the speed of light Extra Terrestrials create the star systems and planets similar to how Humans create housing developments. Extra Terrestrials place the humans on Earth and live among them as Humanoid Extra Terrestrials. Humanoid Extra Terrestrials have lived here the whole time. Millions of the most famous, powerful, wealthy etc.. people living on the planet are Humanoid Extra Terrestrials and most Earthlings aren’t even aware this is a possibility. Notice how this is not even given any consideration by all the so called experts of the “ET” search. The even funnier part is when all the Earthlings wake up and realize those vehicles transiting our star system aren’t even FLYING and we call them Unidentified Flying Objects. The Earthlings are in for a rude awakening one day.

Sound waves, their speed is relative to the air. Light “waves”, their speed is relative to the aether. Really. weinsteinsletter.weebly.com Or do you think that light travels at “c” relative to a moving car and its stationary tracks? (Have to check for insanity.) 🙂 🙂

Light travels at c in all (vacuum) inertial frames of reference. This is kind of fundamental to special relativity.

Also, the Speed of Light is a local phenomenon as opposed to the Quantum Effects, which are non-local, e.g. Wave-Particle Duality, Superposition, Entanglement, etc.

May I respectfully point out a glaring error? In the graphic showing the speed changes as the laser light passes through various media, the speeds are shown as “mph”. I believe you intended it to read miles/sec. Please correct me if I’m wrong.

Thanks for the article Matt. I disagree with ” light moves at incredible speeds and is the fastest moving thing in the Universe”. We know that the influence of gravity moves at the same speed. Really it’s the relationship between space and time that determines the fastest possible speed in the Universe. It just happens that light moves at that fastest speed. So, it’s better to say ‘the speed that light also moves at’ – rather than ‘the speed of light’.

The speed of light is constant, if the photons moving in the universe, only where the matter is formed. This Einstein’s claim that the speed of light is the same irrespective of whether the light source is moving or stationary, relatively, there is no rationale. Imagine a stationary light source and another object that is moving away from him at lightning speed. If this object emits light toward a stationary object, it is not one of them can not see the light. What will happen if both objects are going the speed of light in the same direction and the back light is emitted, whether the first one to see the light.? Sure it will. According to Einstein this would not have happened, because the first object escapes the speed of light. Whether it is worth the Doppler effect for light? According to Einstein, no, but what is the red and blue shift?

Great article. Again. Hmm. Correct me if I’m wrong but doesn’t it take light 0 sec to reach the nearest star? It is for the observer on earth it takes 4,2 years to watch the light get to its destination. If you actually travel at the speed of light, you can go anywhere in the universe in no time. Haven’t done the math lately but I remember the figure 75 years to get to the other side of the universe with a rocket accelerating with 1g.

One thing that I’ve always wondered about the speed of light… As a computer guy, the analogy that comes to mind is networks, and the information propagation latency of packets travelling through a network. Even there, there is an absolute top limit of lightspeed, but before that, there’s the latency of the switching fabric itself. So, my question is this: In the crudest terms, is the speed of light representing the latency limits of information propagation (a photon) through the ‘switching fabric’ of whatever quantum elements constitute space-time?

It’s always been easier for me to think about this stuff in terms of a 4th spatial dimension that measures the distance between quantum bits, which I imagine increasing as gravity and/or speed increases. Thus, the macro-level structures (like atoms and people) perceive time as slowing down, due ot the propagation of information becoming slower as the density of the quantum bits decreases (or distance between the bits increases), as measured by this 4th spatial dimension.

By that logic, Gravity becomes a measure of the density of space-time in this 4th spatial dimension, which I’ve never heard mentioned anywhere, so I assume my analogy breaks down at this point 🙂

read back up the comments.. (to ‘Qev” on Sep 2). He basically answers your questions…though I have not had the time to study “…electric permittivity and magnetic permeability of free space…” Let me know if you do the research.. : ) — : )

Comments are closed.

  • International edition
  • Australia edition
  • Europe edition

Einstein's theory of special relativity

Why you can't travel at the speed of light

A lbert Einstein is famous for many things, not least his theories of relativity. The first, the special theory of relativity, was the one that began the physicist's reputation for tearing apart the classical worldview that had come before. Special relativity, a way of relating the motion of objects in the universe, led scientists to re-evaluate their assumptions about things as fundamental as time and space. And it led to important revelations about the relationship between energy and matter.

Special relativity was published by Einstein in 1905, in a paper titled "On the Electrodynamics of Moving Bodies". He came to it after picking on a conflict he noticed between the equations for electricity and magnetism, which the physicist James Clerk Maxwell had recently developed, and Isaac Newton's more established laws of motion.

Light, according to Maxwell, was a vibration in the electromagnetic field and it travelled at a constant speed in a vacuum. More than 100 years earlier, Newton had set down his laws of motion and, together with ideas from Galileo Galilei, these showed how the speed of an object would differ depend on who was measuring it and how they were moving relative to the object. A ball you are holding will seem still to you, even when you're in a moving car. But that ball will seem to be moving to anyone standing on the pavement.

But there was a problem in applying Newton's laws of motion to light. In Maxwell's equations, the speed of electromagnetic waves is a constant defined by the properties of the material through which the waves move. There is nothing in there that allows the speed of these waves to be different for different people depending on how they were moving relative to each other. Which is bizarre, if you think about it.

Imagine someone sitting in a stationary train, throwing a ball from where he's sitting to the opposite wall, a few metres further down the train from him. You, standing on the station platform, measure the speed of the ball at the same value as the person on the train.

Now the train starts to move (in the direction of the ball), and you again measure the speed of the ball. You would rightly calculate it as higher – the initial speed (ie, when the train was at rest) plus the forward speed of the train. On the train, meanwhile, the game-player will notice nothing different. Your two values for the speed of the ball will be different; both correct for your frames of reference.

Replace the ball with light and this calculation goes awry. If the person on the train were shining a light at the opposite wall and measured the speed of the particles of light (photons), you and the passenger would both find that the photons had the same speed at all times. In all cases, the speed of the photons would stay at just under 300,000 kilometres per second, as Maxwell's equations say they should.

Einstein took this idea – the invariance of the speed of light – as one of his two postulates for the special theory of relativity. The other postulate was that the laws of physics are the same wherever you are, whether on an plane or standing on a country road. But to keep the speed of light constant at all times and for all observers, in special relativity, space and time become stretchy and variable. Time is not absolute, for example. A moving clock ticks more slowly than a stationary one. Travel at the speed of light and, theoretically, the clock would stop altogether.

How much the time dilates can be calculated by the two equations above. On the right, Δt is the time interval between two events as measured by the person they affect. (In our example above, this would be the person in the train.) On the left, Δt' is the time interval between the same two events but measured by an outside observer in a separate frame of reference (the person on the platform). These two times are related by the Lorentz factor (γ), which in this example is a term that takes into account the velocity (v) of the train relative to the station platform, which is "at rest". In this expression, c is a constant equal to the speed of light in a vacuum.

The length of moving objects also shrink in the direction in which they move. Get to the speed of light (not really possible, but imagine if you could for a moment) and the object's length would shrink to zero.

The contracted length of a moving object relative to a stationary one can be calculated by dividing the proper length by the Lorentz factor – if it were possible for an object to reach the speed of light its length would shrink to zero.

It is important to note that if you were the person moving faster and faster, you would not notice anything: time would tick normally for you and you would not be squashed in length. But anyone watching you from the celestial station platform would be able to measure the differences, as calculated from the Lorentz factor. However, for everyday objects and everyday speeds, the Lorentz factor will be close to 1 – it is only at speeds close to that of light that the relativistic effects need serious attention.

Another feature that emerges from special relativity is that, as something speeds up, its mass increases compared with its mass at rest, with the mass of the moving object determined by multiplying its rest mass by the Lorentz factor. This increase in relativistic mass makes every extra unit of energy you put into speeding up the object less effective at making it actually move faster.

As the speed of the object increases and starts to reach appreciable fractions of the speed of light (c), the portion of energy going into making the object more massive gets bigger and bigger.

This explains why nothing can travel faster than light – at or near light speed, any extra energy you put into an object does not make it move faster but just increases its mass. Mass and energy are the same thing – this is a profoundly important result. But that is another story.

  • Albert Einstein
  • A short history of equations
  • Isaac Newton

More on this story

does light travel at a constant speed

The ideal gas law – why bubbles expand if you heat them

does light travel at a constant speed

Sound, light and water waves and how scientists worked out the mathematics

does light travel at a constant speed

What is the second law of thermodynamics?

does light travel at a constant speed

What is Heisenberg's Uncertainty Principle?

Newton's universal law of gravitation.

does light travel at a constant speed

What are Maxwell's Equations?

Comments (…), most viewed.

Speed of Light Calculator

Table of contents

With this speed of light calculator, we aim to help you calculate the distance light can travel in a fixed time . As the speed of light is the fastest speed in the universe, it would be fascinating to know just how far it can travel in a short amount of time.

We have written this article to help you understand what the speed of light is , how fast the speed of light is , and how to calculate the speed of light . We will also demonstrate some examples to help you understand the computation of the speed of light.

What is the speed of light? How fast is the speed of light?

The speed of light is scientifically proven to be the universe's maximum speed. This means no matter how hard you try, you can never exceed this speed in this universe. Hence, there are also some theories on getting into another universe by breaking this limit. You can understand this more using our speed calculator and distance calculator .

So, how fast is the speed of light? The speed of light is 299,792,458 m/s in a vacuum. The speed of light in mph is 670,616,629 mph . With this speed, one can go around the globe more than 400,000 times in a minute!

One thing to note is that the speed of light slows down when it goes through different mediums. Light travels faster in air than in water, for instance. This phenomenon causes the refraction of light.

Now, let's look at how to calculate the speed of light.

How to calculate the speed of light?

As the speed of light is constant, calculating the speed of light usually falls on calculating the distance that light can travel in a certain time period. Hence, let's have a look at the following example:

  • Source: Light
  • Speed of light: 299,792,458 m/s
  • Time traveled: 100 seconds

You can perform the calculation in three steps:

Determine the speed of light.

As mentioned, the speed of light is the fastest speed in the universe, and it is always a constant in a vacuum. Hence, the speed of light is 299,792,458 m/s .

Determine the time that the light has traveled.

The next step is to know how much time the light has traveled. Unlike looking at the speed of a sports car or a train, the speed of light is extremely fast, so the time interval that we look at is usually measured in seconds instead of minutes and hours. You can use our time lapse calculator to help you with this calculation.

For this example, the time that the light has traveled is 100 seconds .

Calculate the distance that the light has traveled.

The final step is to calculate the total distance that the light has traveled within the time . You can calculate this answer using the speed of light formula:

distance = speed of light × time

Thus, the distance that the light can travel in 100 seconds is 299,792,458 m/s × 100 seconds = 29,979,245,800 m

What is the speed of light in mph when it is in a vacuum?

The speed of light in a vacuum is 670,616,629 mph . This is equivalent to 299,792,458 m/s or 1,079,252,849 km/h. This is the fastest speed in the universe.

Is the speed of light always constant?

Yes , the speed of light is always constant for a given medium. The speed of light changes when going through different mediums. For example, light travels slower in water than in air.

How can I calculate the speed of light?

You can calculate the speed of light in three steps:

Determine the distance the light has traveled.

Apply the speed of light formula :

speed of light = distance / time

How far can the speed of light travel in 1 minute?

Light can travel 17,987,547,480 m in 1 minute . This means that light can travel around the earth more than 448 times in a minute.

Speed of light

The speed of light in the medium. In a vacuum, the speed of light is 299,792,458 m/s.

Illustration of stars blurring past from the perspective of moving quickly through space

Why does time change when traveling close to the speed of light? A physicist explains

does light travel at a constant speed

Assistant Professor of Physics and Astronomy, Rochester Institute of Technology

Disclosure statement

Michael Lam does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Rochester Institute of Technology provides funding as a member of The Conversation US.

View all partners

  • Bahasa Indonesia

does light travel at a constant speed

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to [email protected] .

Why does time change when traveling close to the speed of light? – Timothy, age 11, Shoreview, Minnesota

Imagine you’re in a car driving across the country watching the landscape. A tree in the distance gets closer to your car, passes right by you, then moves off again in the distance behind you.

Of course, you know that tree isn’t actually getting up and walking toward or away from you. It’s you in the car who’s moving toward the tree. The tree is moving only in comparison, or relative, to you – that’s what we physicists call relativity . If you had a friend standing by the tree, they would see you moving toward them at the same speed that you see them moving toward you.

In his 1632 book “ Dialogue Concerning the Two Chief World Systems ,” the astronomer Galileo Galilei first described the principle of relativity – the idea that the universe should behave the same way at all times, even if two people experience an event differently because one is moving in respect to the other.

If you are in a car and toss a ball up in the air, the physical laws acting on it, such as the force of gravity, should be the same as the ones acting on an observer watching from the side of the road. However, while you see the ball as moving up and back down, someone on the side of the road will see it moving toward or away from them as well as up and down.

Special relativity and the speed of light

Albert Einstein much later proposed the idea of what’s now known as special relativity to explain some confusing observations that didn’t have an intuitive explanation at the time. Einstein used the work of many physicists and astronomers in the late 1800s to put together his theory in 1905, starting with two key ingredients: the principle of relativity and the strange observation that the speed of light is the same for every observer and nothing can move faster. Everyone measuring the speed of light will get the same result, no matter where they are or how fast they are moving.

Let’s say you’re in the car driving at 60 miles per hour and your friend is standing by the tree. When they throw a ball toward you at a speed of what they perceive to be 60 miles per hour, you might logically think that you would observe your friend and the tree moving toward you at 60 miles per hour and the ball moving toward you at 120 miles per hour. While that’s really close to the correct value, it’s actually slightly wrong.

This discrepancy between what you might expect by adding the two numbers and the true answer grows as one or both of you move closer to the speed of light. If you were traveling in a rocket moving at 75% of the speed of light and your friend throws the ball at the same speed, you would not see the ball moving toward you at 150% of the speed of light. This is because nothing can move faster than light – the ball would still appear to be moving toward you at less than the speed of light. While this all may seem very strange, there is lots of experimental evidence to back up these observations.

Time dilation and the twin paradox

Speed is not the only factor that changes relative to who is making the observation. Another consequence of relativity is the concept of time dilation , whereby people measure different amounts of time passing depending on how fast they move relative to one another.

Each person experiences time normally relative to themselves. But the person moving faster experiences less time passing for them than the person moving slower. It’s only when they reconnect and compare their watches that they realize that one watch says less time has passed while the other says more.

This leads to one of the strangest results of relativity – the twin paradox , which says that if one of a pair of twins makes a trip into space on a high-speed rocket, they will return to Earth to find their twin has aged faster than they have. It’s important to note that time behaves “normally” as perceived by each twin (exactly as you are experiencing time now), even if their measurements disagree.

You might be wondering: If each twin sees themselves as stationary and the other as moving toward them, wouldn’t they each measure the other as aging faster? The answer is no, because they can’t both be older relative to the other twin.

The twin on the spaceship is not only moving at a particular speed where the frame of references stay the same but also accelerating compared with the twin on Earth. Unlike speeds that are relative to the observer, accelerations are absolute. If you step on a scale, the weight you are measuring is actually your acceleration due to gravity. This measurement stays the same regardless of the speed at which the Earth is moving through the solar system, or the solar system is moving through the galaxy or the galaxy through the universe.

Neither twin experiences any strangeness with their watches as one moves closer to the speed of light – they both experience time as normally as you or I do. It’s only when they meet up and compare their observations that they will see a difference – one that is perfectly defined by the mathematics of relativity.

Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to [email protected] . Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.

  • General Relativity
  • Special Relativity
  • Time dilation
  • Speed of light
  • Albert Einstein
  • Curious Kids
  • Theory of relativity
  • Curious Kids US

does light travel at a constant speed

Assistant Editor - 1 year cadetship

does light travel at a constant speed

Executive Dean, Faculty of Health

does light travel at a constant speed

Nutrition Research Coordinator – Bone Health Program

does light travel at a constant speed

Lecturer/Senior Lecturer, Earth System Science (School of Science)

does light travel at a constant speed

Sydney Horizon Educators (Identified)

does light travel at a constant speed

What If Humans Traveled at the Speed of Light? Here's What Happens

S pace is always ripe for theoretical thought exercises, such as the intriguing question, “What would happen if humans traveled at the speed of light?”

Knewz.com has learned that humans would probably not realize we were moving at the speed of light because we cannot feel constant velocity.

However, the main problem would be accelerating to the 671 million miles per hour that light travels, according to an interview published by Space.com .

Rapid acceleration can be extremely painful and even deadly to humans, and we can only handle forces of four to six times the pull of gravity (4 to 6 gs). That makes the 6,000 gs of accelerating to the speed of light completely untenable.

Even more reasonable gs from endeavors like taking off on a space rocket or flying a fighter jet can kill a person because the force makes it difficult for the body to pump blood from the feet to the brain, which is why passing out is such a threat for pilots.

“Your blood will have a hard time pumping to your extremities,” said Michael Pravica, a professor of physics at the University of Nevada, Las Vegas, in the article.

If the g-force does not subside, the person will die because the blood is no longer transporting oxygen throughout the body.

That being said, 6,000 gs would flatten the person like a pancake before that ever became an issue.

The article posited that humans could potentially travel at the speed of light if they accelerated slowly. At the rate of a free fall (1 g), it would take 11 months to reach the speed of light.

Unfortunately, physics still presents a problem, specifically Einstein’s theory of relativity. As objects travel closer to the speed of light, their mass starts to grow, and the theory has proven that it would require infinite mass to travel at the speed of light.

This problem of physics is why humans have never managed to get anything to travel at the speed of light. Scientists have pushed sub-atomic particles to move at 99.9% the speed of light, but never 100%.

As humans are much larger than sub-atomic particles, the amount of energy required to push a human even to 99.9% the speed of light would be “extremely improbable” said Pravica.

However, suppose we allow ourselves to break physics and enable a person to travel at the speed of light, Einstein's theory of relativity argues that the person would age incredibly slowly thanks to time dilation.

Additionally, despite aging slower, people moving at normal speed would appear to be moving in slow motion. So, the speed-of-light travellers would simultaneously be moving much faster than their slow-motion peers while also aging slower.

One fascinating idea is that the speed of light is a foundation of modern physics, but there is no true rule that light must be the fastest object in the universe, according to Discover Magazine .

Our current understanding of physics puts light as the limit of speed, but humans in the distant future could theoretically experience a breakthrough and discover a means to travel faster than the speed of light.

While the idea is fun to ponder, there are significant hurdles that essentially guarantee humans will not be able to travel at the speed of light anytime in the foreseeable future.

It would require infinite mass to travel at the speed of light. By: MEGA

IMAGES

  1. What Is the Speed of Light?

    does light travel at a constant speed

  2. How Fast Does Light Travel From The Sun To Earth

    does light travel at a constant speed

  3. How Fast is the Speed of Light in Space

    does light travel at a constant speed

  4. What is the Speed of Light

    does light travel at a constant speed

  5. PPT

    does light travel at a constant speed

  6. How fast is the speed of light?

    does light travel at a constant speed

VIDEO

  1. Why is the Speed of Light Constant? Exploring the Mysteries of the Universe

  2. Is Light Speed Constant? The Physics of Light Speed Variability

  3. Does Traveling at Light Speed Have a Limit? A Journey Beyond Time

  4. The Truth About Faster Than Light Travel: Debunking the Myths #shorts

  5. How fast does light travel in a vacuum? #science #space #light #vacuum #sciencefacts #shorts

  6. 5 mind-blowing facts about the speed of light

COMMENTS

  1. Speed of light: How fast light travels, explained simply and clearly

    The speed of light is 299,792,458 meters per second and that constant tells us much about cause and effect in the universe.

  2. Speed of light

    The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour). According to the special theory of relativity, c is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying ...

  3. Why is the speed of light the way it is?

    That's because all massless particles are able to travel at this speed, and since light is massless, it can travel at that speed. ... how can the speed of light be constant ( miles per second , if ...

  4. How fast does light travel?

    The speed of light traveling through a vacuum is exactly 299,792,458 meters (983,571,056 feet) per second. That's about 186,282 miles per second — a universal constant known in equations as "c ...

  5. Physics Explained: Here's Why The Speed of Light Is The ...

    Today the speed of light, or c as it's commonly known, is considered the cornerstone of special relativity - unlike space and time, the speed of light is constant, independent of the observer. What's more, this constant underpins much of what we understand about the Universe. It matches the speed of a gravitational wave, and yes, it's the ...

  6. What is the speed of light?

    In a vacuum, such as outer space, light travels at a constant speed of approximately 299,792 kilometers per second (or about 186,282 miles per second), which is often rounded to 300,000 kilometers ...

  7. Speed of light

    Speed of light, speed at which light waves propagate through different materials. In a vacuum, the speed of light is 299,792,458 meters per second. The speed of light is considered a fundamental constant of nature. Its significance is far broader than its role in describing a property of electromagnetic waves.

  8. The Speed of Light Is Constant: Einstein

    Moving Light. Light from a moving source also travels at 300,000 km/sec (186,000 miles/sec). Say that Einstein's bike travels at 10% the speed of light (30,000 km/sec): the speed of light from Einstein's headlight does NOT equal 330,000 km/sec. The speed of light is constant and does not depend on the speed of the light source.

  9. Speed of light not so constant after all

    Speed of light not so constant after all. Pulse structure can slow photons, even in a vacuum. SHIFTING SPEEDS Even in vacuum conditions, light can move slower than its maximum speed depending on ...

  10. Light: Electromagnetic waves, the electromagnetic spectrum and photons

    Their product is the constant c ‍ , the speed of light, which is equal to 3.00 × 10 8 m/s ‍ . This relationship reflects an important fact: all electromagnetic radiation, regardless of wavelength or frequency, travels at the speed of light.

  11. Why isn't the speed of light infinite?

    The common experience of turning on a light switch certainly shows that light travels very quickly. ... get mixed up to keep the speed of light constant implies that, in some sense, space and time ...

  12. Speed of Light May Not Be Constant, Physicists Say

    The speed of light may not be constant, a possibility that could have broad implications for fields of cosmology and even astronomy, say physicists. ... [10 Implications of Faster-Than-Light Travel]

  13. Why is the speed of light constant?

    Discover the reason behind the speed of light's constancy and how it shapes our view of space and time. Learn more science facts on sciencefocus.com.

  14. What Is the Speed of Light?

    The speed of light is the rate at which light travels. The speed of light in a vacuum is a constant value that is denoted by the letter c and is defined as exactly 299,792,458 meters per second. Visible light, other electromagnetic radiation, gravity waves, and other massless particles travel at c. Matter, which has mass, can approach the speed ...

  15. What is the Speed of Light?

    Speed of Light ( c ): Light travels at a constant speed of 1,079,252,848.8 (1.07 billion) km per hour. That works out to 299,792,458 m/s, or about 670,616,629 mph (miles per hour). To put that in ...

  16. How did Einstein know the speed of light was constant?

    In 1887 the Michelson Morley experiment provided evidence that the speed of light was independent of the direction of travel of the observer ... But its influence was indirect in that it did not invalidate the theories that relied on a constant speed of light. Share. Cite. Improve this answer. Follow edited Jul 8, 2019 at 8:37. answered ...

  17. Einstein's Theory and Light

    Article Constant Speed Einstein's crucial breakthrough, in 1905, can be summed up in a deceptively simple statement: The speed of light is constant. Article A New View of Light Prior to Einstein's breakthrough, scientists sought the "luminiferous ether" through which they believed light must travel. Article Cosmic Speed Limit Physicists once ...

  18. Why you can't travel at the speed of light

    This explains why nothing can travel faster than light - at or near light speed, any extra energy you put into an object does not make it move faster but just increases its mass. Mass and energy ...

  19. Not an Illusion: Why the Speed of Light is Constant for All ...

    No matter where or when it is observed, light always travels at the same speed in a vacuum, no matter who is making the measurement. ... and the second is that the speed of light is constant for ...

  20. Three Ways to Travel at (Nearly) the Speed of Light

    The theory of special relativity showed that particles of light, photons, travel through a vacuum at a constant pace of 670,616,629 miles per hour — a speed that's immensely difficult to achieve and impossible to surpass in that environment. ... which is the constant stream of charged particles from the Sun — is accelerated to ...

  21. Speed of Light Calculator

    As the speed of light is constant, calculating the speed of light usually falls on calculating the distance that light can travel in a certain time period. Hence, let's have a look at the following example: Source: Light; Speed of light: 299,792,458 m/s; Time traveled: 100 seconds; You can perform the calculation in three steps:

  22. Why does time change when traveling close to the speed of light? A

    If you were traveling in a rocket moving at 75% of the speed of light and your friend throws the ball at the same speed, you would not see the ball moving toward you at 150% of the speed of light.

  23. special relativity

    The whole body of Special theory of relativity concerns itself with what are the consequences of postulating the speed of light to be constant in all frames of reference. That is, we find transformations between frames of reference by postulating the speed of light being constant.

  24. What If Humans Traveled at the Speed of Light? Here's What Happens

    This problem of physics is why humans have never managed to get anything to travel at the speed of light. Scientists have pushed sub-atomic particles to move at 99.9% the speed of light, but never ...