• More from M-W
  • To save this word, you'll need to log in. Log In

Definition of voyage

 (Entry 1 of 2)

Definition of voyage  (Entry 2 of 2)

intransitive verb

transitive verb

  • peregrinate

Examples of voyage in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'voyage.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Middle English viage, veyage , from Anglo-French veiage , from Late Latin viaticum , from Latin, traveling money, from neuter of viaticus of a journey, from via way — more at way

14th century, in the meaning defined at sense 1

15th century, in the meaning defined at intransitive sense

Phrases Containing voyage

Dictionary entries near voyage.

vox populi vox Dei

voyage charter party

Cite this Entry

“Voyage.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/voyage. Accessed 22 Apr. 2024.

Kids Definition

Kids definition of voyage.

Kids Definition of voyage  (Entry 2 of 2)

More from Merriam-Webster on voyage

Nglish: Translation of voyage for Spanish Speakers

Britannica English: Translation of voyage for Arabic Speakers

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, on 'biweekly' and 'bimonthly', popular in wordplay, the words of the week - apr. 19, 10 words from taylor swift songs (merriam's version), a great big list of bread words, 9 superb owl words, 10 words for lesser-known games and sports, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Earth as seen by Apollo 17 in 1972

Join NASA in Celebrating Earth Day 2024 by Sharing a #GlobalSelfie

NASA Selects New Aircraft-Driven Studies of Earth and Climate Change

NASA Selects New Aircraft-Driven Studies of Earth and Climate Change

This 2024 Earth Day poster is an ocean themed vertical 15x30 illustration created from NASA satellite cloud imagery overlaid on ocean data. The white cloud imagery wraps around shapes, defining three whales and a school of fish. Swirly cloud patterns, called Von Kármán Vortices, create the feeling of movement in the composition. The focal point is a cyclone in the upper third of the poster. At the center flies the recently launched PACE satellite. The ocean imagery – composed of blues, aquas, and greens – is filled with subtle color changes and undulating patterns created by churning sediment, organic matter and phytoplankton.

The Ocean Touches Everything: Celebrate Earth Day with NASA

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Fermi

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

definition of voyager in history

NASA Open Science Initiative Expands OpenET Across Amazon Basin  

definition of voyager in history

NASA Motion Sickness Study Volunteers Needed!

definition of voyager in history

Students Celebrate Rockets, Environment at NASA’s Kennedy Space Center

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

Mars Science Laboratory: Curiosity Rover

Mars Science Laboratory: Curiosity Rover

Sols 4159-4160: A Fully Loaded First Sol

Sols 4159-4160: A Fully Loaded First Sol

Hubble Captures a Bright Galactic and Stellar Duo

Hubble Captures a Bright Galactic and Stellar Duo

NASA’s TESS Returns to Science Operations

NASA’s TESS Returns to Science Operations

Astronauts To Patch Up NASA’s NICER Telescope

Astronauts To Patch Up NASA’s NICER Telescope

Hubble Goes Hunting for Small Main Belt Asteroids

Hubble Goes Hunting for Small Main Belt Asteroids

The PACE spacecraft sending data down over radio frequency links to an antenna on Earth. The science images shown are real photos from the PACE mission.

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

Amendment 10: B.9 Heliophysics Low-Cost Access to Space Final Text and Proposal Due Date.

Amendment 10: B.9 Heliophysics Low-Cost Access to Space Final Text and Proposal Due Date.

A natural-color image of mountains in central Pennsylvania taken by Landsat 8

Tech Today: Taking Earth’s Pulse with NASA Satellites

My NASA Data Milestones: Eclipsed by the Eclipse!

My NASA Data Milestones: Eclipsed by the Eclipse!

Earth Day 2024: Posters and Virtual Backgrounds

Earth Day 2024: Posters and Virtual Backgrounds

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

45 years ago: voyager 1 begins its epic journey to the outer planets and beyond, johnson space center.

Forty-five years ago, the Voyager 1 spacecraft began an epic journey that continues to this day. The second of a pair of spacecraft, Voyager 1 lifted off on Sept. 5, 1977, 16 days after its twin left on a similar voyage. NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, managed the two spacecraft on their missions to explore the outer planets. Taking advantage of a rare planetary alignment to use the gravity of one planet to redirect the spacecraft to the next, the Voyagers planned to use Jupiter’s gravity to send them on to explore Saturn and its large moon Titan. They carried sophisticated instruments to conduct their in-depth explorations of the giant planets. Both spacecraft continue to return data as they make their way out of our solar system and enter interstellar space.

voyager_1_tops_trajectories

In the 1960s, mission designers at JPL noted that the next occurrence of a once-every-175-year alignment of the outer planets would happen in the late 1970s. A spacecraft could take advantage of this opportunity to fly by Jupiter and use its gravity to bend its trajectory to visit Saturn, and repeat the process to also visit Uranus, Neptune, and Pluto. Launching several missions to visit each planet individually would take much longer and cost much more. The original plan to send two pairs of Thermoelectric Outer Planet Spacecraft on these Grand Tours proved too costly leading to its cancellation in 1971. The next year, NASA approved a scaled-down version of the project to send a pair of Mariner-class spacecraft in 1977 to explore just Jupiter and Saturn, with an expected five-year operational life. On March 7, 1977, NASA Administrator James C. Fletcher announced the renaming of these Mariner Jupiter/Saturn 1977 spacecraft as Voyager 1 and 2. Scientists held out hope that one of them could ultimately visit Uranus and Neptune, thereby fulfilling most of the original Grand Tour’s objectives – Pluto would have to wait several decades for its first visit.

voyager_1_mjs_77_artwork_1975

Each Voyager carried a suite of 11 instruments to study the planets during each encounter and to learn more about interplanetary space in the outer reaches of the solar system, including: 

  • An imaging science system consisting of narrow-angle and wide-angle cameras to photograph the planet and its satellites.
  • A radio science system to determine the planet’s physical properties.
  • An infrared interferometer spectrometer to investigate local and global energy balance and atmospheric composition.
  • An ultraviolet spectrometer to measure atmospheric properties.
  • A magnetometer to analyze the planet’s magnetic field and interaction with the solar wind.
  • A plasma spectrometer to investigate microscopic properties of plasma ions.
  • A low-energy charged particle device to measure fluxes and distributions of ions.
  • A cosmic ray detection system to determine the origin and behavior of cosmic radiation.
  • A planetary radio astronomy investigation to study radio emissions from Jupiter.
  • A photopolarimeter to measure the planet’s surface composition.
  • A plasma wave system to study the planet’s magnetosphere.

voyager_1_instruments

Voyager 1 lifted off on Sept. 5, 1977, atop a Titan IIIE-Centaur rocket from Launch Complex 41 at Cape Canaveral Air Force Station, now Cape Canaveral Space Force Station, in Florida. Two weeks after its launch, from a distance of 7.25 million miles, Voyager 1 turned its camera back toward its home planet and took the first single-frame image of the Earth-Moon system. The spacecraft successfully crossed the asteroid belt between Dec. 10, 1977, and Sept. 8, 1978.

voyager_1_earth_and_moon_from_voyager_1_1977

Although Voyager 1 launched two weeks after its twin, it traveled on a faster trajectory and arrived at Jupiter four months earlier. Voyager 1 conducted its observations of Jupiter between Jan. 6 and April 13, 1979, making its closest approach of 216,837 miles from the planet’s center on March 5. The spacecraft returned 19,000 images of the giant planet, many of Jupiter’s satellites, and confirmed the presence of a thin ring encircling it. Its other instruments returned information about Jupiter’s atmosphere and magnetic field. Jupiter’s massive gravity field bent the spacecraft’s trajectory and accelerated it toward Saturn.

voyager_1_saturn_departure_nov_16_1980_3_3_m_miles

Voyager 1 began its long-range observations of Saturn on Aug. 22, 1980, passed within 114,500 miles of the planet’s center on Nov. 12, and concluded its studies on Dec. 14. Because of its interest to scientists, mission planners chose the spacecraft’s trajectory to make a close flyby of Saturn’s largest moon Titan – the only planetary satellite with a dense atmosphere – just before the closest approach to the planet itself. This trajectory, passing over Saturn’s south pole and bending north over the plane of the ecliptic, precluded Voyager 1 from making any additional planetary encounters. The spacecraft flew 4,033 miles from Titan’s center, returning images of its unbroken orange atmosphere and high-altitude blue haze layer. During the encounter, Voyager 1 returned 16,000 photographs, imaging Saturn, its rings, many of its known satellites and discovering several new ones, while its instruments returned data about Saturn’s atmosphere and magnetic field.

voyager_1_family_portrait

On Feb. 14, 1990, more than 12 years after it began its journey from Earth and shortly before controllers  permanently turned off its cameras to conserve power, Voyager 1 spun around and pointed them back into the solar system. In a mosaic of 60 images, it captured a “family portrait” of six of the solar system’s planets, including a pale blue dot called Earth more than 3.7 billion miles away. Fittingly, these were the last pictures returned from either Voyager spacecraft. On Feb. 17, 1998, Voyager 1 became the most distant human-made object, overtaking the Pioneer 10 spacecraft on their way out of the solar system. In February 2020, to commemorate the photograph’s 30th anniversary, NASA released a remastered version of the image of Earth as Pale Blue Dot Revisited .

earth-palebluedot-6bkm-voyager1

On New Year’s Day 1990, both spacecraft officially began the Voyager Interstellar Mission as they inexorably made their escape from our solar system. On Aug. 25, 2012, Voyager 1 passed beyond the heliopause, the boundary between the heliosphere, the bubble-like region of space created by the Sun, and the interstellar medium. Its twin followed suit six years later. Today , 45 years after its launch and 14.6 billion miles from Earth, four of Voyager 1’s 11 instruments continue to return useful data, having now spent 10 years in interstellar space. Signals from the spacecraft take nearly 22 hours to reach Earth, and 22 hours for Earth-based signals to reach the spacecraft. Engineers expect that the spacecraft will continue to return data from interstellar space until about 2025 when it will no longer be able to power its systems. And just in case an alien intelligence finds it one day, Voyager 1 like its twin carries a gold-plated record that contains information about its home planet, including recordings of terrestrial sounds, music, and greetings in 55 languages. Engineers at NASA thoughtfully included Instructions on how to play the record.

voyager_1_golden_record

The voyage continues…

  • Become A Member
  • Gift Membership
  • Kids Membership
  • Other Ways to Give
  • Explore Worlds
  • Defend Earth

How We Work

  • Education & Public Outreach
  • Space Policy & Advocacy
  • Science & Technology
  • Global Collaboration

Our Results

Learn how our members and community are changing the worlds.

Our citizen-funded spacecraft successfully demonstrated solar sailing for CubeSats.

Space Topics

  • Planets & Other Worlds
  • Space Missions
  • Space Policy
  • Planetary Radio
  • Space Images

The Planetary Report

The eclipse issue.

Science and splendor under the shadow.

Get Involved

Membership programs for explorers of all ages.

Get updates and weekly tools to learn, share, and advocate for space exploration.

Volunteer as a space advocate.

Support Our Mission

  • Renew Membership
  • Society Projects

The Planetary Fund

Accelerate progress in our three core enterprises — Explore Worlds, Find Life, and Defend Earth. You can support the entire fund, or designate a core enterprise of your choice.

  • Strategic Framework
  • News & Press

The Planetary Society

Know the cosmos and our place within it.

Our Mission

Empowering the world's citizens to advance space science and exploration.

  • Explore Space
  • Take Action
  • Member Community
  • Account Center
  • “Exploration is in our nature.” - Carl Sagan

The Voyager missions

Highlights Voyager 1 and Voyager 2 launched in 1977 and made a grand tour of the solar system's outer planets. They are the only functioning spacecraft in interstellar space, and they are still sending back measurements of the interstellar medium. Each spacecraft carries a copy of the golden record, a missive from Earth to any alien lifeforms that may find the probes in the future.

What are the Voyager missions?

The Voyager program consists of two spacecraft: Voyager 1 and Voyager 2. Voyager 2 was actually launched first, in August 1977, but Voyager 1 was sent on a faster trajectory when it launched about two weeks later. They are the only two functioning spacecraft currently in interstellar space, beyond the environment controlled by the sun.

Voyager 2’s path took it past Jupiter in 1979, Saturn in 1981, Uranus in 1985, and Neptune in 1989. It is the only spacecraft to have visited Uranus or Neptune, and has provided much of the information that we use to characterize them now.

Because of its higher speed and more direct trajectory, Voyager 1 overtook Voyager 2 just a few months after they launched. It visited Jupiter in 1979 and Saturn in 1980. It overtook Pioneer 10 — the only other spacecraft in interstellar space thus far — in 1998 and is now the most distant artificial object from Earth.

How the Voyagers work

The two spacecraft are identical, each with a radio dish 3.7 meters (12 feet) across to transmit data back to Earth and a set of 16 thrusters to control their orientations and point their dishes toward Earth. The thrusters run on hydrazine fuel, but the electronic components of each spacecraft are powered by thermoelectric generators that run on plutonium. Each carries 11 scientific instruments, about half of which were designed just for observing planets and have now been shut off. The instruments that are now off include several cameras and spectrometers to examine the planets, as well as two radio-based experiments. Voyager 2 now has five functioning instruments: a magnetometer, a spectrometer designed to investigate plasmas, an instrument to measure low-energy charged particles and one for cosmic rays, and one that measures plasma waves. Voyager 1 only has four of those, as its plasma spectrometer is broken.

Jupiter findings

Over the course of their grand tours of the solar system, the Voyagers took tens of thousands of images and measurements that significantly changed our understanding of the outer planets.

At Jupiter, they gave us our first detailed ideas of how the planet’s atmosphere moves and evolves, showing that the Great Red Spot was a counter-clockwise rotating storm that interacted with other, smaller storms. They were also the first missions to spot a faint, dusty ring around Jupiter. Finally, they observed some of Jupiter’s moons, discovering Io’s volcanism, finding the linear features on Europa that were among the first hints that it might have an ocean beneath its surface, and granting Ganymede the title of largest moon in the solar system, a superlative that was previously thought to belong to Saturn’s moon Titan.

Saturn findings

Next, each spacecraft flew past Saturn, where they measured the composition and structure of Saturn’s atmosphere , and Voyager 1 also peered into Titan’s thick haze. Its observations led to the idea that Titan might have liquid hydrocarbons on its surface, a hypothesis that has since been verified by other missions. When the two missions observed Saturn’s rings, they found the gaps and waves that are well-known today. Voyager 1 also spotted three previously-unknown moons orbiting Saturn: Atlas, Prometheus, and Pandora.

Uranus and Neptune findings

After this, Voyager 1 headed out of the solar system, while Voyager 2 headed toward Uranus . There, it found 11 previously-unknown moons and two previously-unknown rings. Many of the phenomena it observed on Uranus remained unexplained, such as its unusual magnetic field and an unexpected lack of major temperature changes at different latitudes.

Voyager 2’s final stop, 12 years after it left Earth, was Neptune. When it arrived , it continued its streak of finding new moons with another haul of 6 small satellites, as well as finding rings around Neptune. As it did at Uranus, it observed the planet’s composition and magnetic field. It also found volcanic vents on Neptune’s huge moon Triton before it joined Voyager 1 on the way to interstellar space.

Interstellar space

Interstellar space begins at the heliopause, where the solar wind – a flow of charged particles released by the sun – is too weak to continue pushing against the interstellar medium, and the pressure from the two balances out. Voyager 1 officially entered interstellar space in August 2012, and Voyager 2 joined it  in November 2018.

These exits were instrumental in enabling astronomers to determine where exactly the edge of interstellar space is, something that’s difficult to measure from within the solar system. They showed that interstellar space begins just over 18 billion kilometers (about 11 billion miles) from the sun. The spacecraft continue to send back data on the structure of the interstellar medium.

After its planetary encounters, Voyager 1 took the iconic “Pale Blue Dot” image , showing Earth from about 6 billion kilometers (3.7 billion miles) away. As of 2021 , Voyager 1 is about 155 astronomical units (14.4 billion miles) from Earth, and Voyager 2 is nearly 129 astronomical units (12 billion miles) away.

The golden records

Each Voyager spacecraft has a golden phonograph record affixed to its side, intended as time capsules from Earth to any extraterrestrial life that might find the probes sometime in the distant future. They are inscribed with a message from Jimmy Carter, the U.S. President at the time of launch, which reads: “This is a present from a small, distant world, a token of our sounds, our science, our images, our music, our thoughts and our feelings. We are attempting to survive our time so we may live into yours.”

The covers of the records have several images inscribed, including visual instructions on how to play them, a map of our solar system’s location with respect to a set of 14 pulsars, and a drawing of a hydrogen atom. They are plated with uranium – its rate of decay will allow any future discoverers of either of the records to calculate when they were created.

The records’ contents were selected by a committee chaired by Carl Sagan. Each contains 115 images, including scientific diagrams of the solar system and its planets, the flora and fauna of Earth, and examples of human culture. There are natural sounds, including breaking surf and birdsong, spoken greetings in 55 languages, an hour of brainwave recordings, and an eclectic selection of music ranging from Beethoven to Chuck Berry to a variety of folk music.

Learn more Voyager Mission Status Bulletin Archives Experience A Message From Earth - Inspired by the Voyager Golden Record Neptune, planet of wind and ice

Support missions like Voyager 1 and 2

Whether it's advocating, teaching, inspiring, or learning, you can do something for space, right now. Let's get to work.

For full functionality of this site it is necessary to enable JavaScript. Here are instructions on how to enable JavaScript in your web browser .

  • Daily Crossword
  • Word Puzzle
  • Word Finder

Word of the Day

  • Synonym of the Day
  • Word of the Year
  • Language stories
  • All featured
  • Gender and sexuality
  • All pop culture
  • Grammar Coach ™
  • Writing hub
  • Grammar essentials
  • Commonly confused
  • All writing tips
  • Pop culture
  • Writing tips

Advertisement

[ voi - uh -jer ]

  • one of a series of U.S. space probes that obtained scientific information while flying by the planets Jupiter, Saturn, and Uranus.

/ ˈvɔɪədʒə /

  • either of two US spacecraft that studied the outer solar system; Voyager 1 visited Jupiter (1979) and Saturn (1980), Voyager 2 visited Jupiter (1979) and Saturn (1981) and made the first flyby of Uranus (1986) and Neptune (1989)

Discover More

Example sentences.

A member of Voyager’s optical navigation team, Linda Morabito, spotted an odd, mushroom-shaped feature extending off the edge of Io while she was trying to plot the spacecraft’s position on March 9, 1979.

The Voyager flyby did offer hints that there’s more to Uranus than meets the eye.

More surprising, Voyager’s instruments showed that Uranus’s magnetic field is tilted 60 degrees relative to its axis, as if your compass needle pointed to Houston instead of the north pole.

The simulation shows a significant fraction of a galaxy can be settled in a relatively short period of time, even with ships traveling no faster than the Voyager spacecraft.

It sent gold-plated music albums and photos on the Voyager 1 and 2 space probes.

The television shows were prolific: The Next Generation, Deep Space Nine, Voyager, and Enterprise.

Not Now, Voyager: A Memoirby Lynne Sharon Schwartz The acclaimed author expertly reflects on travel.

The voyager embarks, and is in all probability confined to his cabin, suffering under the dreadful protraction of seasickness.

The air voyager in this description of balloon had formerly many difficulties to contend with.

At the worst, an abstract ideal is pemmican to carry the voyager through the long nights until the ice begins to break.

The night was very dark, and as the huge voyager had no "light out" the Advance could not be censured for running foul.

Many an early voyager was unexpectedly caught by this hook, and found himself embayed.

Related Words

[ ak -s uh -lot-l ]

Start each day with the Word of the Day in your inbox!

By clicking "Sign Up", you are accepting Dictionary.com Terms & Conditions and Privacy Policies.

  • International edition
  • Australia edition
  • Europe edition

Voyager 1 Space Probe in outer space

40 years and counting: the team behind Voyager’s space odyssey

In 1977, Voyager 1 and 2 started their one-way journey across our galaxy, travelling a million miles a day. Jonathan Margolis meets the dedicated team keeping the craft moving

O n a chilly March morning, Steve Howard, aged 65, is at work in his office on the northern edge of Pasadena, California. Two computer screens are squeezed on to his corner desk along with family photos, a tissue box and tins of Altoids Curiously Strong Peppermints. The office is in a quiet business park by a workaday main road. Next to it is a McDonald’s, where people linger for hours over a $1 coffee, seemingly to keep warm. Over the road there’s a scruffier burger joint, Jim’s, with an M missing from its sign – and, visible from Howard’s window, a landscaping supplies yard.

If the few people walking by on West Woodbury Road, Altadena, or popping into the landscaping place for some patio paving slabs were to peer into Howard’s office, they might guess, seeing the graph-covered twin screens and a third PC at the other end of the desk, that he was, perhaps, a financial adviser or a day trader. But what Steve Howard is actually doing makes this very ordinary all-American scene quite extraordinary.

Howard is a Nasa mission controller. He is sending instructions to a probe in interstellar space, 12 billion miles from Earth, beyond Pluto and escaping our Solar System at 1 million miles a day. The 815kg craft, Voyager 1 , is one of two identical machines that for many years now have been the furthest human-made objects from Earth. Howard’s computer code takes 17 hours at the speed of light to reach Voyager 1, the furthest travelled. Voyager 2, which is leaving the solar system in a different direction, is 3bn miles closer. The responses, from transmitters on the twin probes running 23 watts of power – have the power of a billionth of a billionth of a watt by the time they reach Earth.

“So here, see, I have Voyager 1’s status and information up, at least as it was 17 hours ago,” Howard explains. “Right now I’m connected to our Canberra station, and these are seven commands, set to radiate one every five minutes starting 30 minutes from now. They’re to verify that the spacecraft can receive and reset its timer. Such is the speed of light, I will not get confirmation that all is OK until late tomorrow night, but it will have entailed a 25bn-mile round trip, so that’s not too bad.”

Gold standard: unveiling the LP which each space probe carries. The record has 115 photos and messages in 55 languages.

It is no hyperbole to say, then, that the man tapping away at his keyboard on the office park next to McDonald’s is a key figure in the greatest-ever feat of human exploration. There was nothing like the Voyager 1 and 2 missions to the outer planets before they launched in 1977, and although three outer planet probes launched last decade are still on mission, no new ventures into deep space are planned.

Space exploration tends to be more inward looking today than in the so-called Space Age. The famous Curiosity rover is of course still working wonders on Mars, but almost all the US’s coming spacecraft will be restricted to studying our own planet, with special attention to environmental issues. The Voyagers and the people like Howard who still work on them full-time – having, in many cases, done so their entire adult life – are from a different era, when budgets were unrestrained, audaciousness (and showing off to the Soviets) was in vogue and the environment was a concern only for hippies.

Voyager’s spindly limbed, Transit-van-sized machines have been travelling at around 37,000mph for almost 38 years. When they were launched, wooden-framed Morris 1000 Traveller cars had only recently stopped being produced by British Leyland in Oxford. The Voyagers’ on-board computers are early 1970s models that were advanced then but are puny now – an iPhone’s computer is some 200,000 times faster and has about 250,000 times more memory than Voyager’s hardware.

The Voyager mission’s early 70s-inspired and -equipped trip, originally meant to last four years, took the craft initially to Jupiter, then Saturn, then, as a bonus since everything was working well, to Uranus and finally Neptune, after which they spun off into their journey around the Milky Way. Against all expectations their vintage electronics and thrusters are still, mostly, working in the intense -253C cold of outer space. What’s more, their sensors are sending data all day every day, as some will continue to do until 2036. That said, by 2025 almost all the instruments sending worthwhile scientific information will be turned off as the ships’ tiny plutonium-238 power sources dwindle.

The on-board camera on each Voyager, for instance, was deactivated to save power 25 years ago last Valentine’s Day. This was after Voyager 1 took a now-iconic “family portrait” of the solar system from almost 4bn miles out. It captured Neptune, Uranus, Saturn, Jupiter, Venus, Earth (seen, in the late astrophysicist Carl Sagan ’s phrase, as a “pale blue dot”) and the Sun, by then just a tiny point of light. By 2036 the craft will be nearly out of the solar system altogether and will remain dead, although in perfect condition, probably for eternity.

‘One of us is always on call’: Steve Howard in his office in Pasadena, California. Messages sent from his computer take 17 hours at the speed  of light to reach Voyager 1.

It is the Voyager spacecrafts’ longevity, despite their becoming a bit arthritic in later years, that has led to their Mission Control being moved out to an office park. The problem for Nasa – more correctly for the California Institute of Technology’s Jet Propulsion Laboratory , which runs most robotic missions for Nasa – is that high-profile later expeditions, most notably Curiosity, have used the available space on CalTech’s campus. Proud as JPL is of the amazing Voyager story, the craft are not taking photos or doing a lot of sexy science any more and may not encounter anything of much interest for another 40,000 years, by which time they will be deaf and mute. So, like a great grandfather who stubbornly refuses to do the decent thing, the Earth end of the Voyager programme and the spacecraft’s devoted carers have been put in a somewhat off-piste rest home.

Engineers are not given to emotion, but the romance of this incredible voyage of discovery has, by their own account, kept the ageing mission team together. Even latecomers, who were at school when Voyager was launched, have been working on the same mission for 30 years and more. “I’m in my mid-50s and treat the craft like my ageing parents,” says Suzy Dodd , who was 16 at launch, joined as a graduate student and whose card now proclaims surely one of the cooler job titles in science: Project manager, Voyager Interstellar Mission.

“You treat them with a certain amount of reverence; you know they’re stately spacecraft, venerable senior citizens, and you want to do everything possible for them to have a healthy lifetime,” she says. “You need to help them a bit because things have failed and you want to be careful other things don’t. Most of the engineers here have dedicated their career to this project. They have turned down opportunities for promotions and other things because they like Voyager so much they want to stay with it.”

It is clear talking to Voyager staff that they genuinely love their spacecraft, even though most were too young to see them before they flew, and it is more than possible that the older ones will have died before the Voyagers bleep their last. But as engineers, they have mixed feelings about the most famous aspect of that romance, the “golden record” that each craft carries. This is a gold-covered copper LP, packed with a needle and cartridge (plus instructions), and containing, in groove form, 115 photos from Earth, a selection of natural sounds from surf to whales, music from a variety of cultures and eras (the modern west is represented by Chuck Berry’s “Johnny B Goode”) and spoken greetings in 55 languages, from Akkadian, spoken in Sumer about 6,000 years ago, to Welsh.

Carl Sagan, who had the initial idea for the record, wrote in the 1970s: “The spacecraft will be encountered and the record played only if there are advanced spacefaring civilisations in interstellar space. But the launching of this bottle into the cosmic ocean says something very hopeful about life on this planet.” Sagan’s son Nick, then an infant, now a science-fiction novelist and screenwriter (his credits include Star Trek episodes), recorded the English message: “Hello from the children of planet Earth.” But one sure to make many tear up is the Mandarin: “Hope everyone’s well. We are thinking about you all. Please come here to visit when you have time.” (The messages are on the Voyager website, voyager.jpl.nasa.gov ).

Voyager’s mission controllers are less starry-eyed than Sagan about the golden records. You sense some feel that it was too much of a bow to religious sentiment. Steve Howard is one of the more positive on the record question. “Even though Earth may not be here, some intelligent being could pick it up and detect it. I would say that many of the civilisations are much more advanced and would detect something like that and simply go in and decipher it,” he says.

Suzy Dodd’s view is more typical of the team’s. “I think it’s a great idea to get humans and mankind thinking what-ifs. Let’s send a picture of ourselves vintage 1977 and put it on a spacecraft and send it out there forever. I think it’s done to connect us to the spacecraft more than for an alien running into it. I’m of the opinion that space is very empty and the chances of something finding it are remote. But that doesn’t diminish the fact that we’ve got a little time capsule out there travelling through space and now orbiting around in our galaxy. And that’s us.”

For the mission’s much-honoured chief scientist and spokesman since 1972, CalTech professor Ed Stone, aged 79, the romance of Voyager lies more in what it has discovered since he joined the project aged 36. “Yes, the Space Age was a young man’s game back then,” he says, not a little ruefully, sitting on a park bench on the green university campus. “We all knew we were on a mission of discovery. We just had no idea how much discovery there would be. We just kept finding things we didn’t know were there to be found.

Final frontier: Voyager control centre at the California Institute of Technology (Caltech), Pasadena California, 1980.

“For example, before Voyager, the only known volcanoes in the solar system were here on Earth. Then we flew by Jupiter’s moon, Io, which had 10 times the volcanic activity of Earth. Ten times! We detected hot lakes of lava on the surface. That was the first major discovery and it set the tone for the rest of the mission. And there are five instruments still working. But by 2025 the last will go off.”

He doesn’t quite add that by then he will be nearly 90, but does say, smiling: “Thing is, if you want to do space experiments, you have to be optimistic that it’s all going to work and that you’re going to find something worth the work. And you have to be patient, because nothing happens fast in space.”

Stone explains how, although it’s widely considered freakish that the Voyager crafts are still working so well – a TV left permanently on since Jim Callaghan’s day would be hardly working today – it’s less surprising to people like him who built them. To anyone familiar with the inside of a vintage radio or TV, the hand-soldered circuit boards, capacitors, transistors, resistors and so on that run a Voyager would look reassuringly familiar, which isn’t the case with a modern computer or phone, whose microchip-studded innards look more like something out of a UFO.

But the parts in Voyager weren’t as ordinary as they looked. Suzy Dodd, a “newcomer” to the project with just over 30 years’ service, has also been intrigued by the spacecraft’s durability. “The robustness is unique,” she says. “If you talk to the older engineers, they’ll say: ‘Well, we were told to make a four-year mission, but we realised if you just used this higher-rated component, it would last twice as long.’ So they did that. They just didn’t tell anybody. The early engineers were very conscious of trying to make this last as long as possible and, quite frankly, being not as forthcoming with information about the types of parts they were using.”

Even so, Ed Stone says, there have been problems. A ground controller’s error in April 1978 meant that Voyager 2 switched itself irretrievably to its back-up receiver – meaning that the craft has been receiving transmissions from Earth on a dodgy back-up radio for almost the entire mission. One of the original thrusters also failed.

For spacecraft 12bn miles from home and in their dotage, the Voyagers are quite tranquil machines today, but they do need watching. As Steve Howard is in his office inputting code in primordial programming language, on the floor of what passes for the main mission control Enrique Medina, 65, is watching streams of engineering data from the craft. A computer engineer, Medina is another of the eight full- and part-time controllers.

“One of us is always on call,” he says. “We’re all connected all the time by our smartphones. We will hear, that way, which engineering channel is out of tolerance and then we will connect from home with secure IDs and special codes, troubleshoot, determine and sometimes fix it from home. Or in some cases, one of us will drive in. That usually happens four to five times a month.

“Sometimes people are away, but we love Voyager so much that though it’s not part of our employment we’ll come in and do it anyway. Attitude control is my sub-system, but if the propulsion or the power needs attention, we all do multiple jobs,” he adds. “I’ve been working on Voyager since the Uranus encounter in 1986, and I will retire when Voyager retires in 2025. My wife doesn’t like that idea at all, as we already have a retirement place by the beach back in Mexico.”

Medina’s devotion to the Voyager is clear to see. “This has been part of my life for so long, and they pay us to do it, so how can you stop doing something you love? I even talk about the spacecraft like it’s a person, especially if it’s my sub-system.”

Steve Howard feels the same. “I just love to think of everything, all those 65,000 parts on each craft, working up there,” he says. “Oh man, it really is something. Every time we come in here, it’s just a gift. And you know that one day it could stop.”

Do these engineers ever think it might be more fun to be at the controls of Curiosity on the CalTech campus a couple of miles away?

“Yes, maybe,” says Medina, “but after so many years, you’re invested. It’s like being married to someone. It would be interesting to go out with Angelina Jolie, but do I want to give up my wife of 44 years, and my grandkids? I don’t think so. I would not give this up for something more interesting or newer.”

For the most part, Voyager is the reality of space – slow, patient science, humdrum perhaps, but real. It’s only a 20-minute drive from Altadena to Hollywood, where brilliant fake versions of space exploration like Christopher Nolan’s recent Interstellar are confected.

But Voyager, starring real people who keep tissues and tins of Altoids on their desks and real buildings rather than set designers’ glamorous fantasies, just happens to be the only real interstellar mission there will probably be in the lifetime of anyone alive today. It is surely one of the most amazing things in human history.

Follow the Observer Magazine on Twitter @ObsMagazine

  • The Observer

Comments (…)

Most viewed.

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Voyager Rocket Launch

Voyager 2 launched on August 20, 1977, from Cape Canaveral, Florida aboard a Titan-Centaur rocket. On September 5, Voyager 1 launched, also from Cape Canaveral aboard a Titan-Centaur rocket.

Planetary Tour

Between them, Voyager 1 and 2 explored all the giant planets of our outer solar system, Jupiter, Saturn, Uranus and Neptune; 48 of their moons; and the unique system of rings and magnetic fields those planets possess.

Closest approach to Jupiter occurred on March 5, 1979 for Voyager 1; July 9, 1979 for Voyager 2.

Closest approach to Saturn occurred on November 12, 1980 for Voyager 1; August 25, 1981 for Voyager 2.

Closest approach to Uranus occurred on January 24, 1986 by Voyager 2.

Closest approach to Neptune occurred on August 25, 1989 by Voyager 2.

Most Distant Spacecraft

The Voyager spacecraft are the third and fourth human spacecraft to fly beyond all the planets in our solar system. Pioneers 10 and 11 preceded Voyager in outstripping the gravitational attraction of the Sun but on February 17, 1998, Voyager 1 passed Pioneer 10 to become the most distant human-made object in space.

The Golden Record

Both Voyager spacecrafts carry a greeting to any form of life, should that be encountered. The message is carried by a phonograph record - -a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth. The contents of the record were selected for NASA by a committee chaired by Carl Sagan of Cornell University. Dr. Sagan and his associates assembled 115 images and a variety of natural sounds. To this they added musical selections from different cultures and eras, and spoken greetings from Earth-people in fifty-five languages.

Present Status

As of April 2020, Voyager 1 is at a distance of 22.3 billion kilometers (149.0 AU) from the Sun.

Voyager 2 was at a distance of 18.5 billion kilometers (123.6 AU).

Voyager 1 is escaping the solar system at a speed of about 3.6 AU per year. Voyager 2 is escaping the solar system at a speed of about 3.3 AU per year.

There are currently five science investigation teams participating in the Interstellar Mission. They are:

1. Magnetic field investigation 2. Low energy charged particle investigation 3. Cosmic ray investigation 4. Plasma Investigation (Voyager 2 only) 5. Plasma wave investigation

Five instruments onboard the Voyagers directly support the five science investigations. The five instruments are:

1. Magnetic field instrument (MAG) 2. Low energy charged particle instrument (LECP) 3. Cosmic ray instrument (CRS) 4. Plasma instrument (PLS) 5. Plasma wave instrument (PWS)

One other instrument is collecting data but does not have official science investigation associated with it:

6. Ultraviolet spectrometer subsystem (UVS), Voyager 1 only

Termination Shock

Voyager 1 crossed the termination shock in December 2004 at about 94 AU from the Sun while Voyager 2 crossed it in August 2007 at about 84 AU. Both spacecraft are now exploring the Heliosheath.

The Heliosphere

The heliosphere is a bubble around the sun created by the outward flow of the solar wind from the sun and the opposing inward flow of the interstellar wind. That heliosphere is the region influenced by the dynamic properties of the sun that are carried in the solar wind--such as magnetic fields, energetic particles and solar wind plasma. The heliopause marks the end of the heliosphere and the beginning of interstellar space. Voyager 1, which is traveling up away from the plane of the planets, entered interstellar space on Aug. 25, 2012. Voyager 2, which is headed away from the sun beneath the plane of the planets, reached interstellar space on Nov. 5, 2018.

  • Skip to global NPS navigation
  • Skip to this park navigation
  • Skip to the main content
  • Skip to this park information section
  • Skip to the footer section

definition of voyager in history

Exiting nps.gov

Alerts in effect, the life of the voyageur.

Last updated: April 10, 2015

Park footer

Contact info, mailing address:.

Voyageurs National Park Headquarters 360 Hwy 11 East International Falls, MN 56649

(218)-283-6600

Stay Connected

definition of voyager in history

Cambridge Dictionary

  • Cambridge Dictionary +Plus

Meaning of voyager in English

Your browser doesn't support HTML5 audio

  • daily passenger
  • day-tripper
  • grief tourist
  • holidaymaker
  • peripatetic
  • super-commuter

Examples of voyager

Translations of voyager.

Get a quick, free translation!

{{randomImageQuizHook.quizId}}

Word of the Day

the act of an animal running around, sometimes in circles, in a very energetic way

Binding, nailing, and gluing: talking about fastening things together

Binding, nailing, and gluing: talking about fastening things together

definition of voyager in history

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • English    Noun
  • Translations
  • All translations

Add voyager to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

NASA Logo

Voyager 1 Stories

definition of voyager in history

NASA’s Voyager Team Focuses on Software Patch, Thrusters

The efforts should help extend the lifetimes of the agency’s interstellar explorers. Engineers for NASA’s Voyager mission are taking steps to help make sure both spacecraft, launched in 1977, continue to explore interstellar space for years to come. One effort…

definition of voyager in history

NASA’s Voyager Will Do More Science With New Power Strategy

The plan will keep Voyager 2’s science instruments turned on a few years longer than previously anticipated, enabling yet more revelations from interstellar space.

definition of voyager in history

Edward Stone Retires After 50 Years as NASA Voyager’s Project Scientist

Stone’s remarkable tenure on NASA’s longest-operating mission spans decades of historic discoveries and firsts. Edward Stone has retired as the project scientist for NASA’s Voyager mission a half-century after taking on the role. Stone accepted scientific leadership of the historic…

definition of voyager in history

Engineers Solve Data Glitch on NASA’s Voyager 1

A critical system aboard the probe was sending garbled data about its status. Engineers have fixed the issue but are still seeking the root cause. Engineers have repaired an issue affecting data from NASA’s Voyager 1 spacecraft. Earlier this year,…

definition of voyager in history

Voyager, NASA’s Longest-Lived Mission, Logs 45 Years in Space

Launched in 1977, the twin Voyager probes are NASA’s longest-operating mission and the only spacecraft ever to explore interstellar space. NASA’s twin Voyager probes have become, in some ways, time capsules of their era: They each carry an eight-track tape…

Illustration of a galaxy with a bright center and curved spiral arms.

10 Things: Going Interstellar

Humanity’s great leap into interstellar space – the space between the stars – has begun. Here are 10 things we’ve learned about going interstellar.

definition of voyager in history

Engineers Investigating NASA’s Voyager 1 Telemetry Data

While the spacecraft continues to return science data and otherwise operate as normal, the mission team is searching for the source of a system data issue. The engineering team with NASA’s Voyager 1 spacecraft is trying to solve a mystery:…

Studying the Edge of the Sun’s Magnetic Bubble

Our corner of the universe, the solar system, is nestled inside the Milky Way galaxy, home to more than 100 billion stars. The solar system is encased in a bubble called the heliosphere, which separates us from the vast galaxy…

Image of Saturn taken by Voyager 2

40 Years On, Remembering Voyager’s Legacy at Saturn

Voyager 2 made its closest approach to Saturn on Aug. 25, 1981. The mission revealed a planet so phenomenal scientists had to go back.

definition of voyager in history

As NASA’s Voyager 1 Surveys Interstellar Space, Its Density Measurements Are Making Waves

Until recently, every spacecraft in history had made all of its measurements inside our heliosphere, the magnetic bubble inflated by our Sun. But on August 25, 2012, NASA’s Voyager 1 changed that. As it crossed the heliosphere’s boundary, it became…

Words and phrases

Personal account.

  • Access or purchase personal subscriptions
  • Get our newsletter
  • Save searches
  • Set display preferences

Institutional access

Sign in with library card

Sign in with username / password

Recommend to your librarian

Institutional account management

Sign in as administrator on Oxford Academic

voyager noun

  • Hide all quotations

What does the noun voyager mean?

There are four meanings listed in OED's entry for the noun voyager , one of which is labelled obsolete. See ‘Meaning & use’ for definitions, usage, and quotation evidence.

voyager has developed meanings and uses in subjects including

Entry status

OED is undergoing a continuous programme of revision to modernize and improve definitions. This entry has not yet been fully revised.

How common is the noun voyager ?

How is the noun voyager pronounced, british english, u.s. english, where does the noun voyager come from.

Earliest known use

Middle English

The earliest known use of the noun voyager is in the Middle English period (1150—1500).

OED's earliest evidence for voyager is from 1477, in a translation by William Caxton, printer, merchant, and diplomat.

voyager is of multiple origins. Either a borrowing from French. Or formed within English, by derivation.

Etymons: French veaigier ; voyage v. , ‑er suffix 1 .

Nearby entries

  • vox-pop, v. 1915–
  • vox-popping, n. 1928–
  • vox populi, n. c1547–
  • voyage, n. 1297–
  • voyagé, adj. 1931–
  • voyage, v. 1477–
  • voyageable, adj. 1819–
  • voyage food, n. c1610–15
  • voyage policy, n. 1848–
  • voyage provision, n. 1562–65
  • voyager, n. 1477–
  • voyageur, n. 1793–
  • voyaging, n. 1611–
  • voyant, n. 1938–
  • voyant, adj. 1906–
  • voye, n. 1541–78
  • voyeur, n. 1900–
  • voyeur, v. 1959–
  • voyeurism, n. 1924–
  • voyeurist, n. & adj. 1955–
  • voyeuristic, adj. 1929–

Thank you for visiting Oxford English Dictionary

To continue reading, please sign in below or purchase a subscription. After purchasing, please sign in below to access the content.

Meaning & use

Pronunciation, entry history for voyager, n..

voyager, n. was first published in 1920; not yet revised.

voyager, n. was last modified in July 2023.

Revision of the OED is a long-term project. Entries in oed.com which have not been revised may include:

  • corrections and revisions to definitions, pronunciation, etymology, headwords, variant spellings, quotations, and dates;
  • new senses, phrases, and quotations which have been added in subsequent print and online updates.

Revisions and additions of this kind were last incorporated into voyager, n. in July 2023.

Earlier versions of this entry were published in:

OED First Edition (1920)

  • Find out more

OED Second Edition (1989)

  • View voyager in OED Second Edition

Please submit your feedback for voyager, n.

Please include your email address if you are happy to be contacted about your feedback. OUP will not use this email address for any other purpose.

Citation details

Factsheet for voyager, n., browse entry.

NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact

On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health.

An illustration of a spacecraft with a white disk in space.

NASA's interstellar explorer Voyager 1 is finally communicating with ground control in an understandable way again. On Saturday (April 20), Voyager 1 updated ground control about its health status for the first time in 5 months. While the Voyager 1 spacecraft still isn't sending valid science data back to Earth, it is now returning usable information about the health and operating status of its onboard engineering systems. 

Thirty-five years after its launch in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space . It was followed out of our cosmic quarters by its space-faring sibling, Voyager 2 , six years later in 2018. Voyager 2, thankfully, is still operational and communicating well with Earth. 

The two spacecraft remain the only human-made objects exploring space beyond the influence of the sun. However, on Nov. 14, 2023, after 11 years of exploring interstellar space and while sitting a staggering 15 billion miles (24 billion kilometers) from Earth, Voyager 1's binary code — computer language composed of 0s and 1s that it uses to communicate with its flight team at NASA — stopped making sense.

Related: We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

In March, NASA's Voyager 1 operating team sent a digital "poke" to the spacecraft, prompting its flight data subsystem (FDS) to send a full memory readout back home.

This memory dump revealed to scientists and engineers that the "glitch" is the result of a corrupted code contained on a single chip representing around 3% of the FDS memory. The loss of this code rendered Voyager 1's science and engineering data unusable.

People, many of whom are wearing matching blue shirts, celebrating at a conference table.

The NASA team can't physically repair or replace this chip, of course, but what they can do is remotely place the affected code elsewhere in the FDS memory. Though no single section of the memory is large enough to hold this code entirely, the team can slice it into sections and store these chunks separately. To do this, they will also have to adjust the relevant storage sections to ensure the addition of this corrupted code won't cause those areas to stop operating individually, or working together as a whole. In addition to this, NASA staff will also have to ensure any references to the corrupted code's location are updated.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

On April 18, 2024, the team began sending the code to its new location in the FDS memory. This was a painstaking process, as a radio signal takes 22.5 hours to traverse the distance between Earth and Voyager 1, and it then takes another 22.5 hours to get a signal back from the craft. 

By Saturday (April 20), however, the team confirmed their modification had worked. For the first time in five months, the scientists were able to communicate with Voyager 1 and check its health. Over the next few weeks, the team will work on adjusting the rest of the FDS software and aim to recover the regions of the system that are responsible for packaging and returning vital science data from beyond the limits of the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

China's new reusable rocket aces key engine tests

China rolls out rocket for next astronaut mission to Tiangong space station (photos)

Scientists use AI to reconstruct energetic flare blasted from Milky Way's supermassive black hole

  • Robb62 'V'ger must contact the creator. Reply
  • View All 1 Comment

Most Popular

  • 2 Earth Day 2024: Witness our changing planet in 12 incredible satellite images
  • 3 NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact
  • 4 Satellites watch as 4th global coral bleaching event unfolds (image)
  • 5 New trailer for 'Star Wars Outlaws' video game proclaims a golden age for the underworld (video)

definition of voyager in history

NASA’s Tech Demo Streams First Video From Deep Space via Laser

definition of voyager in history

Members of the DSOC team react to the first high-definition streaming video to be sent via laser from deep space on Dec. 11 at NASA’s Jet Propulsion Laboratory. Sent by the DSOC transceiver aboard the Psyche spacecraft, nearly 19 million miles from Earth, the video features a cat named Taters.

definition of voyager in history

A computer screen in the mission support area shows Taters the cat in a still from the first high-definition streaming video to be sent via laser from deep space, as well as the incoming data stream delivering the frames from the video. Credit: NASA/JPL-Caltech Full Image Details

The video, featuring a cat named Taters, was sent back from nearly 19 million miles away by NASA’s laser communications demonstration, marking a historic milestone.

NASA’s Deep Space Optical Communications experiment beamed an ultra-high definition streaming video on Dec. 11 from a record-setting 19 million miles away (31 million kilometers, or about 80 times the Earth-Moon distance). The milestone is part of a NASA technology demonstration aimed at streaming very high-bandwidth video and other data from deep space – enabling future human missions beyond Earth orbit.

“This accomplishment underscores our commitment to advancing optical communications as a key element to meeting our future data transmission needs,” said NASA Deputy Administrator Pam Melroy. “Increasing our bandwidth is essential to achieving our future exploration and science goals, and we look forward to the continued advancement of this technology and the transformation of how we communicate during future interplanetary missions.”

The demo transmitted the 15-second test video via a cutting-edge instrument called a flight laser transceiver . The video signal took 101 seconds to reach Earth, sent at the system’s maximum bit rate of 267 megabits per second (Mbps). Capable of sending and receiving near-infrared signals, the instrument beamed an encoded near-infrared laser to the Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, where it was downloaded. Each frame from the looping video was then sent “live” to NASA’s Jet Propulsion Laboratory in Southern California, where the video was played in real time.

This 15-second clip shows the first ultra-high-definition video sent via laser from deep space, featuring a cat named Taters chasing a laser with test graphics overlayed. To see a “cheat sheet” explaining the components of the video, click here .

The laser communications demo, which launched with NASA’s Psyche mission on Oct. 13, is designed to transmit data from deep space at rates 10 to 100 times greater than the state-of-the-art radio frequency systems used by deep space missions today. As Psyche travels to the main asteroid belt between Mars and Jupiter, the technology demonstration will send high-data-rate signals as far out as the Red Planet’s greatest distance from Earth. In doing so, it paves the way for higher-data-rate communications capable of sending complex scientific information, high-definition imagery, and video in support of humanity’s next giant leap: sending humans to Mars .

“One of the goals is to demonstrate the ability to transmit broadband video across millions of miles. Nothing on Psyche generates video data, so we usually send packets of randomly generated test data,” said Bill Klipstein, the tech demo’s project manager at JPL. “But to make this significant event more memorable, we decided to work with designers at JPL to create a fun video, which captures the essence of the demo as part of the Psyche mission.”

Feline Frequency

Uploaded before launch, the short ultra-high definition video features an orange tabby cat named Taters, the pet of a JPL employee, chasing a laser pointer, with overlayed graphics. The graphics illustrate several features from the tech demo, such as Psyche’s orbital path, Palomar’s telescope dome, and technical information about the laser and its data bit rate. Tater’s heart rate, color, and breed are also on display.

Members of the JPL team pose after the first streamed ultra-HD video was received from deep space.

Members of the JPL team pose after the first streamed ultra-HD video was received from deep space. Remote team members (including Taters the cat) appear on the meeting screen. Standing, from left, are: Dan Goods, Abi Biswas, Ryan Rogalin, Meera Srinivasan, Bill Klipstein, Oliver Lay, and Christine Chen.

“Despite transmitting from millions of miles away, it was able to send the video faster than most broadband internet connections,” said Ryan Rogalin, the project’s receiver electronics lead at JPL. “In fact, after receiving the video at Palomar, it was sent to JPL over the internet, and that connection was slower than the signal coming from deep space. JPL’s DesignLab did an amazing job helping us showcase this technology – everyone loves Taters.”

There’s also a historical link: Beginning in 1928, a small statue of the popular cartoon character Felix the Cat was featured in television test broadcast transmissions. Today, cat videos and memes are some of the most popular content online.

Milestone After Milestone

This latest milestone comes after “first light” was achieved on Nov. 14. Since then, the system has demonstrated faster data downlink speeds and increased pointing accuracy during its weekly checkouts. On the night of Dec. 4, the project demonstrated downlink bit rates of 62.5 Mbps, 100 Mbps, and 267 Mbps, which is comparable to broadband internet download speeds. The team was able to download a total of 1.3 terabits of data during that time. As a comparison, NASA’s Magellan mission to Venus downlinked 1.2 terabits during its entire mission from 1990 to 1994.

“When we achieved first light, we were excited, but also cautious. This is a new technology, and we are experimenting with how it works,” said Ken Andrews, project flight operations lead at JPL. “But now, with the help of our Psyche colleagues, we are getting used to working with the system and can lock onto the spacecraft and ground terminals for longer than we could previously. We are learning something new during each checkout.”

More About the Mission

The Deep Space Optical Communications demonstration is the latest in a series of optical communication demonstrations funded by the Technology Demonstration Missions (TDM) program under NASA’s Space Technology Mission Directorate and supported by NASA’s SCaN (Space Communications and Navigation) program within the agency’s Space Operations Mission Directorate.

The Psyche mission is led by Arizona State University. JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program under the Science Mission Directorate, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, managed the launch service. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis

For more information about the laser communications demo, visit:

https://www.jpl.nasa.gov/missions/dsoc

News Media Contact

Ian J. O’Neill

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-2649

[email protected]

  • Dictionaries home
  • American English
  • Collocations
  • German-English
  • Grammar home
  • Practical English Usage
  • Learn & Practise Grammar (Beta)
  • Word Lists home
  • My Word Lists
  • Recent additions
  • Resources home
  • Text Checker

Definition of Voyager from the Oxford Advanced Learner's Dictionary

Want to learn more?

Find out which words work together and produce more natural-sounding English with the Oxford Collocations Dictionary app. Try it for free as part of the Oxford Advanced Learner’s Dictionary app.

definition of voyager in history

  • Editorial Standards
  • Reprints & Permissions

Kari Lake's lawsuit was 'explosive,' all right. It blew up smack in her face

Opinion: the u.s. supreme court has declined to give kari lake "do-over relief" from the 2022 election. sadly, no court in the land can give voters relief from lake and her conspiracy theories..

definition of voyager in history

Remember last month when Kari Lake and Mark Finchem claimed they had “new evidence” meriting a “do-over” of the 2022 election?

“This new evidence is the most explosive evidence ever! ” their benefactor Mike Lindell promised on Steve Bannon’s War Room podcast.

“It’s going to shock the world,” he told Bannon a few days later, adding that people should buy his percale sheets to pass out to their friends along with Lake’s Supreme Court appeal.

Ex-Overstock CEO Patrick Byrne, a major funder of the Arizona Senate’s 2020 audit, also promoted the supposed big reveal, declaring "This moment could redefine history ."

Today, history marches on, its definition intact.

The U.S. Supreme Court on Monday declined to hear Lake and Finchem’s appeal.

A long 2 years of trying to sell lies to the courts

It’s the end of the road for their two-year quest to outlaw those demon Dominion vote counting machines — on account of maybe, possibly they might someday, theoretically be hacked.

Only don’t expect Lake and Finchem to drop their rant or, heaven forbid, come clean with Arizona’s voters.

True to brand, Lake suggested the Supreme Court was either naive or in on the vast conspiracy to steal our vote.

“The Supreme Court of the United States did not believe that the issue of election integrity was worth the court's time during another crucial presidential race," she said on X, formerly Twitter.

That should keep the MAGA crowd riled.

Lake, Finchem and their fellow far-right pals, in a quest for money or a rung up the political food chain, have spent the last three years regaling us with conspiracy theories about the many devious ways the 2020 election was stolen in Arizona. Many of them involved the Dominion Voting System’s tabulation machines used to count the vote in Maricopa County.

Remember the “Kraken” lawsuit, filed by then-state GOP Chairwoman Kelli Ward — the one claiming “at least” 412,494 Arizona ballots were phony, part of a Venezuelan-style plot to secretly switch thousands of votes from Donald Trump to Joe Biden?

A federal judge dismissed it, noting that “gossip and innuendo” does not constitute evidence.

Even MAGA's own audit couldn't find evidence of fraud

Remember Maricopa County’s independent audit”?

Two sets of elections experts concluded the tabulation equipment wasn’t connected to the internet, much less hacked to switch votes.

Remember the three IT experts who examined the county’s routers and logs, under the watchful eye of a special master (former GOP Rep. John Shadegg), agreed to by the Arizona Senate and Maricopa County.

All three separately concluded the equipment wasn’t hacked.

How about the Arizona Senate’s famed Cyber Ninja audit, the one funded and run by Trump supporters determined to blow the lid off the the conspiracy to steal our vote?

No hacking found there either. In fact, a hand count of Maricopa County’s 2.1 million paper ballots matched the machine count, showing Biden the winner.

But why stop casting doubts about election reliability

So naturally Lake and Finchem, then candidates for governor and secretary of state, sued the state of Arizona and Maricopa County in April 2022, asking a judge to bar the machine tabulation of votes in the 2022 election.

In their lawsuit, underwritten by Lindell, they claimed that even if the machines weren't hacked, they could be hacked and that there's no way to verify the machine count unless we start voting with paper ballots.

Ignoring the fact that we already vote with paper ballots.

U.S. District Court John J. Tuchi threw out their "frivilous" lawsuit in August 2022 and slapped their lawyers with both sanctions and the county’s legal tab.

The 9th Circuit U.S. Court of Appeals unanimously rejected their complaint, noting it “relies on a ‘long chain of hypothetical contingencies’ that have never occurred in Arizona.”

In other words, a conspiracy must be more than a figment of your imagination — or a calculated political strategy — if you want the courts to take you seriously.

Is it any surprise the US Supreme Court send 'em packing?

Now, the Supreme Court has sent them packing, appropriately unimpressed.

That’s because the pair’s new evidence sounded pretty much like the same old Maricopa County-is-the-devil argument they’ve been making all along: altered software, faulty testing, cover-ups, the usual stuff the courts have rejected.

And still no evidence that Dominion’s machines — the ones various independent experts have confirmed were not connected to the internet — were hacked.

Yet Lake and Finchem had the nerve in March to request “do-over relief” from the 2022 election and an end to the machine tabulation of votes in America.

Please give us all a break from the toxic spew

You know who really deserves “relief”? 

The voters of Arizona and America. For three years, we’ve been force fed the lie that we can’t trust our elections. Decent people put their faith in shysters and now a fair swath of America has no faith in the bedrock that underlies the foundation of our country: Our elections.

Meanwhile, Lake and Finchem have moved on, of a sort. They're now hoping to hoodwink us into electing them to the U.S. Senate and state Senate respectively, on a promise to restore "election integrity."

Put another way, to "restore" what they stole.

In the end, Lindell was right after all.

Lake’s and Finchem’s new “evidence” was, indeed, explosive.

It blew up smack in their faces.

Now, what are they going to take to undo the damage?

Reach Roberts at [email protected] . Follow her on X, formerly Twitter, at @LaurieRoberts or on Threads at laurierobertsaz .

Support local journalism: Subscribe to azcentral.com today .

IMAGES

  1. Voyager 1

    definition of voyager in history

  2. Voyager-1 spacecraft: 40 years of history and interstellar flight

    definition of voyager in history

  3. Voyager-1 spacecraft: 40 years of history and interstellar flight

    definition of voyager in history

  4. A look back at the Voyager missions through 20 incredible images from

    definition of voyager in history

  5. Voyager

    definition of voyager in history

  6. The Voyager spacecraft: 40 years in space, surreal solar system

    definition of voyager in history

VIDEO

  1. VOYAGER

  2. VOYAGER

  3. Voyager 1's Fascinating Journey 😧

  4. The Remarkable Journey of Voyager 1

  5. Voyager Golden Record: Humanity's Message to the Cosmos

  6. A FEW MOMENTS AGO: Voyager 1 Just Transmitted An ALARMING Signal From The Cosmos

COMMENTS

  1. Voyager

    This article was most recently revised and updated by Erik Gregersen. Voyager, either of a pair of robotic U.S. interplanetary probes launched to observe and to transmit information to Earth about the giant planets of the outer solar system and the farthest reaches of the Sun's sphere of influence. Voyager 1 and 2 were the first spacecraft to ...

  2. Voyager 1

    Voyager 1 was part of a twin-spacecraft mission with Voyager 2. The twin-spacecraft mission took advantage of a rare orbital positioning of Jupiter, Saturn, Uranus, and Neptune that permitted a multiplanet tour with relatively low fuel requirements and flight time. The alignment allowed each spacecraft, following a particular trajectory, to use its fall into a planet's gravitational field to ...

  3. Voyager Definition & Meaning

    The meaning of VOYAGE is an act or instance of traveling : journey. How to use voyage in a sentence.

  4. 45 Years Ago: Voyager 1 Begins its Epic Journey to the Outer ...

    Forty-five years ago, the Voyager 1 spacecraft began an epic journey that continues to this day. The second of a pair of spacecraft, Voyager 1 lifted off on Sept. 5, 1977, 16 days after its twin left on a similar voyage. NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, managed the two spacecraft on their missions to explore the outer planets.

  5. Voyager 1

    Voyager 1 is the first human-made object to venture into interstellar space. Voyager 1 discovered a thin ring around Jupiter and two new Jovian moons: Thebe and Metis. At Saturn, Voyager 1 found five new moons and a new ring called the G-ring. Unable to render the provided source.

  6. Golden Record Overview

    With this example before them, NASA placed a more ambitious message aboard Voyager 1 and 2, a kind of time capsule, intended to communicate a story of our world to extraterrestrials. The Voyager message is carried by a phonograph record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and ...

  7. The Voyager missions

    What are the Voyager missions? The Voyager program consists of two spacecraft: Voyager 1 and Voyager 2. Voyager 2 was actually launched first, in August 1977, but Voyager 1 was sent on a faster trajectory when it launched about two weeks later. They are the only two functioning spacecraft currently in interstellar space, beyond the environment ...

  8. VOYAGER Definition & Meaning

    Voyager definition: one of a series of U.S. space probes that obtained scientific information while flying by the planets Jupiter, Saturn, and Uranus.. See examples of VOYAGER used in a sentence.

  9. 40 years and counting: the team behind Voyager's space odyssey

    In 1977, Voyager 1 and 2 started their one-way journey across our galaxy, travelling a million miles a day. Jonathan Margolis meets the dedicated team keeping the craft moving. O n a chilly March ...

  10. Voyager Definition & Meaning

    voyager (noun) voyager / ˈ vojɪʤɚ/ noun. plural voyagers. Britannica Dictionary definition of VOYAGER. [count] : a person who makes a long journey to a distant or unknown place especially by ship or boat. Columbus and other voyagers who traveled to the New World. VOYAGER meaning: a person who makes a long journey to a distant or unknown ...

  11. Voyager

    The Voyager spacecraft are the third and fourth human spacecraft to fly beyond all the planets in our solar system. Pioneers 10 and 11 preceded Voyager in outstripping the gravitational attraction of the Sun but on February 17, 1998, Voyager 1 passed Pioneer 10 to become the most distant human-made object in space.

  12. The Life of the Voyageur

    In the early morning, before the mists have risen from the waters, the loud "Lève! Lève! Lève!" of the guide roused the camp. Five minutes sufficed to finish the traveler's toilet, tie up his blankets and embark. The prows of the boat-brigades swung into the lake, and the day's voyage began.

  13. VOYAGER

    VOYAGER definition: 1. a person who goes on a long and sometimes dangerous journey: 2. a person who goes on a long and…. Learn more.

  14. Voyager

    the NASA programme which in 1977 sent two spacecraft into space to investigate certain planets. Voyager 1 discovered rings around the planet Jupiter in 1979 and flew past Saturn the following year. It sent back to Earth the first close photographs of both planets. Voyager 2 has had the longest journey in history. It passed Jupiter in 1979, Saturn in 1981, Uranus in 1986 and Neptune in 1989.

  15. History

    Because the voyageur system was developed under the French regime and as most of the men hired by the NWC were French-Canadians, the "voyageur" termed remained and most of the men were recruited in French-Canadian villages and towns, notably Sorel, Trois-Rivières, Québec and Montréal. Other villages and towns include the following: Laprairie ...

  16. VOYAGER

    VOYAGER meaning: 1. a person who goes on a long and sometimes dangerous journey: 2. a person who goes on a long and…. Learn more.

  17. Voyageurs

    Voyageurs ( French: [vwajaʒœʁ] ⓘ; lit. 'travellers') were 18th- and 19th-century French Canadians who transported furs by canoe at the peak of the North American fur trade. The emblematic meaning of the term applies to places ( New France, including the Pays d'en Haut and the Pays des Illinois) and times where that transportation was over ...

  18. Voyager 1 History, Mission & Facts

    History of Voyager 1. The Voyager 1 mission's conceptualization began in the 1960s when NASA scientists first pitched the Grand Tour program. This program was to send four spacecraft into space to ...

  19. Voyager 1 Stories

    Engineers for NASA's Voyager mission are taking steps to help make sure both spacecraft, launched in 1977, continue to explore interstellar space for years to come. ... Until recently, every spacecraft in history had made all of its measurements inside our heliosphere, the magnetic bubble inflated by our Sun. But on August 25, 2012, NASA's ...

  20. Voyager

    voyager: 1 n a traveler to a distant land (especially one who travels by sea) Type of: traveler , traveller a person who changes location

  21. voyager noun

    Definition of voyager noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.

  22. voyager, n. meanings, etymology and more

    corrections and revisions to definitions, pronunciation, etymology, headwords, variant spellings, quotations, and dates; new senses, phrases, and quotations which have been added in subsequent print and online updates. Revisions and additions of this kind were last incorporated into voyager, n. in July 2023.

  23. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data.

  24. NASA's Tech Demo Streams First Video From Deep Space via Laser

    NASA's Deep Space Optical Communications experiment beamed an ultra-high definition streaming video on Dec. 11 from a record-setting 19 million miles away (31 million kilometers, or about 80 times the Earth-Moon distance). The milestone is part of a NASA technology demonstration aimed at streaming very high-bandwidth video and other data from deep space - enabling future human missions ...

  25. voyager_2

    the NASA programme which in 1977 sent two spacecraft into space to investigate certain planets. Voyager 1 discovered rings around the planet Jupiter in 1979 and flew past Saturn the following year. It sent back to Earth the first close photographs of both planets. Voyager 2 has had the longest journey in history. It passed Jupiter in 1979, Saturn in 1981, Uranus in 1986 and Neptune in 1989.

  26. NASA Voyager 1 Making Sense Again After Glitch In Interstellar ...

    NASA's Voyager 1 spacecraft—currently cruising in interstellar space—got in touch on April 20 with usable data on its health and status. That's a triumph after a glitch in November caused ...

  27. Kari Lake's 'explosive' lawsuit just blew up in her face

    Today, history marches on, its definition intact. The U.S. Supreme Court on Monday declined to hear Lake and Finchem's appeal. A long 2 years of trying to sell lies to the courts.