Voyager 1: Facts about Earth's farthest spacecraft

Voyager 1 continues to explore the cosmos along with its twin probe, Voyager 2.

Artist's illustration of Voyager 1 probe looking back at the solar system from a great distance.

The Grand Tour

Voyager 1 jupiter flyby, voyager 1 visits saturn and its moons, voyager 1 enters interstellar space, voyager 1's interstellar adventures, additional resources.

Voyager 1 is the first spacecraft to travel beyond the solar system and reach interstellar space . 

The probe launched on Sept. 5, 1977 — about two weeks after its twin Voyager 2 — and as of August 2022 is approximately 14.6 billion miles (23.5 billion kilometers) away from our planet, making it Earth 's farthest spacecraft. Voyager 1 is currently zipping through space at around 38,000 mph (17 kilometers per second), according to NASA Jet Propulsion Laboratory .

When Voyager 1 launched a mission to explore the outer planets in our solar system nobody knew how important the probe would still be 45 years later The probe has remained operational long past expectations and continues to send information about its journeys back to Earth. 

Related: Celebrate 45 years of Voyager with these amazing images of our solar system (gallery)

Elizabeth Howell headshot

Elizabeth Howell, Ph.D., is a staff writer in the spaceflight channel since 2022. She was contributing writer for  Space.com  for 10 years before that, since 2012. Elizabeth's on-site reporting includes two human spaceflight launches from Kazakhstan, three space shuttle missions in Florida, and embedded reporting from a simulated Mars mission in Utah. 

Size: Voyager 1's body is about the size of a subcompact car. The boom for its magnetometer instrument extends 42.7 feet (13 meters). Weight (at launch): 1,797 pounds (815 kilograms). Launch date: Sept. 5, 1977

Jupiter flyby date: March 5, 1979

Saturn flyby date: Nov. 12, 1980.

Entered interstellar space: Aug. 25, 2012. 

The spacecraft entered interstellar space in August 2012, almost 35 years after its voyage began. The discovery wasn't made official until 2013, however, when scientists had time to review the data sent back from Voyager 1.

Voyager 1 was the second of the twin spacecraft to launch, but it was the first to race by Jupiter and Saturn . The images Voyager 1 sent back have been used in schoolbooks and by many media outlets for a generation. The spacecraft also carries a special record — The Golden Record — that's designed to carry voices and music from Earth out into the cosmos. 

According to NASA Jet Propulsion Laboratory (JPL) , Voyager 1 has enough fuel to keep its instruments running until at least 2025. By then, the spacecraft will be approximately 13.8 billion miles (22.1 billion kilometers) away from the sun.  

The Voyager missions took advantage of a special alignment of the outer planets that happens just once every 176 years. This alignment allows spacecraft to gravitationally "slingshot" from one planet to the next, making the most efficient use of their limited fuel.

NASA originally planned to send two spacecraft past Jupiter, Saturn and Pluto and two other probes past Jupiter, Uranus and Neptune . Budgetary reasons forced the agency to scale back its plans, but NASA still got a lot out of the two Voyagers it launched.

Voyager 2 flew past Jupiter, Saturn, Uranus and Neptune , while Voyager 1 focused on Jupiter and Saturn.

Recognizing that the Voyagers would eventually fly to interstellar space, NASA authorized the production of two Golden Records to be placed on board the spacecraft. Sounds ranging from whale calls to the music of Chuck Berry were placed on board, as well as spoken greetings in 55 languages. 

The 12-inch-wide (30 centimeters), gold-plated copper disks also included pictorials showing how to operate them and the position of the sun among nearby pulsars (a type of fast-spinning stellar corpse known as a neutron star ), in case extraterrestrials someday stumbled onto the spacecraft and wondered where they came from.

Both spacecraft are powered by three radioisotope thermoelectric generators , devices that convert the heat released by the radioactive decay of plutonium to electricity. Both probes were outfitted with 10 scientific instruments, including a two-camera imaging system, multiple spectrometers, a magnetometer and gear that detects low-energy charged particles and high-energy cosmic rays . Mission team members have also used the Voyagers' communications system to help them study planets and moons, bringing the total number of scientific investigations on each craft to 11.

Voyager 1 almost didn't get off the ground at its launch , as its rocket came within 3.5 seconds of running out of fuel on Sept. 5, 1977.

But the probe made it safely to space and raced past its twin after launch, getting beyond the main asteroid belt between Mars and Jupiter before Voyager 2 did. Voyager 1's first pictures of Jupiter beamed back to Earth in April 1978, when the probe was 165 million miles (266 million kilometers) from home.

According to NASA , each voyager probe has about 3 million times less memory than a mobile phone and transmits data approximately 38,000 times slower than a 5g internet connection.  

To NASA's surprise, in March 1979 Voyager 1 spotted a thin ring circling the giant planet. It found two new moons as well — Thebe and Metis. Additionally, Voyager 1 sent back detailed pictures of Jupiter's big Galilean moons ( Io , Europa , Ganymede and Callisto ) as well as Amalthea .

Like the Pioneer spacecraft before it , Voyager's look at Jupiter's moons revealed them to be active worlds of their own. And Voyager 1 made some intriguing discoveries about these natural satellites. For example, Io's many volcanoes and mottled yellow-brown-orange surface showed that, like planets, moons can have active interiors.

Additionally, Voyager 1 sent back photos of Europa showing a relatively smooth surface broken up by lines, hinting at ice and maybe even an ocean underneath. (Subsequent observations and analyses have revealed that Europa likely harbors a huge subsurface ocean of liquid water, which may even be able to support Earth-like life .)

Voyager 1's closest approach to Jupiter was on March 5, 1979, when it came within 174,000 miles (280,000 km) of the turbulent cloud tops. Then it was time for the probe to aim for Saturn.

Scientists only had to wait about a year, until 1980, to get close-up pictures of Saturn. Like Jupiter, the ringed planet turned out to be full of surprises.

One of Voyager 1's targets was the F ring, a thin structure discovered only the year previously by NASA's Pioneer 11 probe. Voyager's higher-resolution camera spotted two new moons, Prometheus and Pandora, whose orbits keep the icy material in the F ring in a defined orbit. It also discovered Atlas and a new ring, the G ring, and took images of several other Saturn moons.

One puzzle for astronomers was Titan , the second-largest moon in the solar system (after Jupiter's Ganymede). Close-up pictures of Titan showed nothing but orange haze, leading to years of speculation about what it was like underneath. It wouldn't be until the mid-2000s that humanity would find out, thanks to photos snapped from beneath the haze by the European Space Agency's Huygens atmospheric probe .

The Saturn encounter marked the end of Voyager 1's primary mission. The focus then shifted to tracking the 1,590-pound (720 kg) craft as it sped toward interstellar space.

Two decades before it notched that milestone, however, Voyager 1 took one of the most iconic photos in spaceflight history. On Feb. 14, 1990, the probe turned back toward Earth and snapped an image of its home planet from 3.7 billion miles (6 billion km) away. The photo shows Earth as a tiny dot suspended in a ray of sunlight. 

Voyager 1 took dozens of other photos that day, capturing five other planets and the sun in a multi-image "solar system family portrait." But the Pale Blue Dot picture stands out, reminding us that Earth is a small outpost of life in an incomprehensibly vast universe.

Voyager 1 left the heliosphere — the giant bubble of charged particles that the sun blows around itself — in August 2012, popping free into interstellar space. The discovery was made public in a study published in the journal Science the following year.

The results came to light after a powerful solar eruption was recorded by Voyager 1's plasma wave instrument between April 9 and May 22, 2013. The eruption caused electrons near Voyager 1 to vibrate. From the oscillations, researchers discovered that Voyager 1's surroundings had a higher density than what is found just inside the heliosphere.

It seems contradictory that electron density is higher in interstellar space than it is in the sun's neighborhood. But researchers explained that, at the edge of the heliosphere, the electron density is dramatically low compared with locations near Earth. 

Researchers then backtracked through Voyager 1's data and nailed down the official departure date to Aug. 25, 2012. The date was fixed not only by the electron oscillations but also by the spacecraft's measurements of charged solar particles. 

On that fateful day — which was the same day that Apollo 11 astronaut Neil Armstrong died — the probe saw a 1,000-fold drop in these particles and a 9% increase in galactic cosmic rays that come from outside the solar system . At that point, Voyager 1 was 11.25 billion miles (18.11 billion km) from the sun, or about 121 astronomical units (AU).

One AU is the average Earth-sun distance — about 93 million miles (150 million km).

You can keep tabs on the Voyager 1's current distance and mission status on this NASA website .

Since flying into interstellar space, Voyager 1 has sent back a variety of valuable information about conditions in this zone of the universe . Its discoveries include showing that cosmic radiation out there is very intense, and demonstrating how charged particles from the sun interact with those emitted by other stars , mission project scientist Ed Stone, of the California Institute of Technology in Pasadena, told Space.com in September 2017 .

The spacecraft's capabilities continue to astound engineers. In December 2017, for example, NASA announced that Voyager 1 successfully used its backup thrusters to orient itself to "talk" with Earth . The trajectory correction maneuver (TCM) thrusters hadn't been used since November 1980, during Voyager 1's flyby of Saturn. Since then, the spacecraft had primarily used its standard attitude-control thrusters to swing the spacecraft in the right orientation to communicate with Earth. 

As the performance of the attitude-control thrusters began to deteriorate, however, NASA decided to test the TCM thrusters — an idea that could extend Voyager 1's operational life. That test ultimately succeeded. 

"With these thrusters that are still functional after 37 years without use, we will be able to extend the life of the Voyager 1 spacecraft by two to three years," Voyager project manager Suzanne Dodd, of NASA's Jet Propulsion, Laboratory (JPL) in Southern California, said in a statement in December 2017 .

Mission team members have taken other measures to extend Voyager 1's life as well. For example, they turned off the spacecraft's cameras shortly after the Pale Blue Dot photo was taken to help conserve Voyager 1's limited power supply. (The cameras wouldn't pick up much in the darkness of deep space anyway.) Over the years, the mission team has turned off five other scientific instruments as well, leaving Voyager 1 with four that are still functioning — the Cosmic Ray Subsystem, the Low-Energy Charged Particles instrument, the Magnetometer and the Plasma Wave Subsystem. (Similar measures have been taken with Voyager 2, which currently has five operational instruments .)

The Voyager spacecraft each celebrated 45 years in space in 2022, a monumental milestone for the twin probes.

"Over the last 45 years, the Voyager missions have been integral in providing this knowledge and have helped change our understanding of the sun and its influence in ways no other spacecraft can," says Nicola Fox, director of the Heliophysics Division at NASA Headquarters in Washington, in a NASA statement .

"Today, as both Voyagers explore interstellar space, they are providing humanity with observations of uncharted territory," said Linda Spilker, Voyager's deputy project scientist at JPL in the same NASA statement.

"This is the first time we've been able to directly study how a star, our Sun, interacts with the particles and magnetic fields outside our heliosphere, helping scientists understand the local neighborhood between the stars, upending some of the theories about this region, and providing key information for future missions." Spilker continues.

Voyager 1's next big encounter will take place in 40,000 years when the probe comes within 1.7 light-years of the star AC +79 3888. (The star is roughly 17.5 light-years from Earth.) However, Voyager 1's falling power supply means it will probably stop collecting scientific data around 2025.

You can learn much more about both Voyagers' design, scientific instruments and mission goals at JPL's Voyager site . NASA has lots of in-depth information about the Pale Blue Dot photo, including Carl Sagan's large role in making it happen, here . And if you're interested in the Golden Record, check out this detailed New Yorker piece by Timothy Ferris, who produced the historic artifact.  Explore the history of Voyager with this interactive timeline courtesy of NASA.  

Bibliography

  • Bell, Jim. " The Interstellar Age: Inside the Forty-Year Voyager Mission ," Dutton, 2015.
  • Landau, Elizabeth. "The Voyagers in popular culture," Dec. 1, 2017. https://www.nasa.gov/feature/jpl/the-voyagers-in-popular-culture
  • PBS, "Voyager: A history in photos." https://www.pbs.org/the-farthest/mission/voyager-history-photos/

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Elizabeth Howell

Elizabeth Howell (she/her), Ph.D., is a staff writer in the spaceflight channel since 2022 covering diversity, education and gaming as well. She was contributing writer for Space.com for 10 years before joining full-time. Elizabeth's reporting includes multiple exclusives with the White House and Office of the Vice-President of the United States, an exclusive conversation with aspiring space tourist (and NSYNC bassist) Lance Bass, speaking several times with the International Space Station, witnessing five human spaceflight launches on two continents, flying parabolic, working inside a spacesuit, and participating in a simulated Mars mission. Her latest book, " Why Am I Taller ?", is co-written with astronaut Dave Williams. Elizabeth holds a Ph.D. and M.Sc. in Space Studies from the University of North Dakota, a Bachelor of Journalism from Canada's Carleton University and a Bachelor of History from Canada's Athabasca University. Elizabeth is also a post-secondary instructor in communications and science at several institutions since 2015; her experience includes developing and teaching an astronomy course at Canada's Algonquin College (with Indigenous content as well) to more than 1,000 students since 2020. Elizabeth first got interested in space after watching the movie Apollo 13 in 1996, and still wants to be an astronaut someday. Mastodon: https://qoto.org/@howellspace

  • Daisy Dobrijevic Reference Editor

NASA satellite's 'shocking' space junk near-miss was even closer than thought

Rocket Lab gearing up to refly Electron booster for 1st time

Cosmonaut Muhammed Faris, first Syrian in space, dies at 72

Most Popular

  • 2 This Week In Space podcast: Episode 107 — Mars Sample Return Blues
  • 3 Lego Star Wars Millennium Falcon (2024) review
  • 4 Those magic minutes during April 8's solar eclipse brought me to tears
  • 5 Everything we know about 'The Fantastic Four'

voyager 1 camera type

voyager 1 camera type

Interstellar Mission

Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence.

Voyager 1 Foreground

Mission Statistics

Launch Date

Sept. 5, 1977

About the mission

Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence. Launched just shortly after its twin spacecraft, Voyager 2, in 1977, Voyager 1 explored the Jovian and Saturnian systems discovering new moons, active volcanoes and a wealth of data about the outer solar system.

Voyagers 1 and 2 were designed to take advantage of a rare planetary alignment that occurs only once in 176 years and remain the most well traveled spacecraft in history. Both spacecraft carry a sort of time capsule called the Golden Record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the story of our world to extraterrestrials.

Instruments

  • Imaging system
  • Infrared interferometer spectrometer
  • Ultraviolet spectrometer
  • Triaxial fluxgate magnetometer
  • Plasma spectrometer
  • Low-energy charged particles detectors
  • Cosmic Ray System (CRS)
  • Photopolarimeter System (PPS)
  • Plasma Wave System (PWS)

Mission Highlights

Sept. 1, 2013

Interstellar target graphic

Interactive 3D model of Voyager 1. View the full interactive experience at Eyes on the Solar System .

  • Become A Member
  • Gift Membership
  • Kids Membership
  • Other Ways to Give
  • Explore Worlds
  • Defend Earth

How We Work

  • Education & Public Outreach
  • Space Policy & Advocacy
  • Science & Technology
  • Global Collaboration

Our Results

Learn how our members and community are changing the worlds.

Our citizen-funded spacecraft successfully demonstrated solar sailing for CubeSats.

Space Topics

  • Planets & Other Worlds
  • Space Missions
  • Space Policy
  • Planetary Radio
  • Space Images

The Planetary Report

The eclipse issue.

Science and splendor under the shadow.

Get Involved

Membership programs for explorers of all ages.

Get updates and weekly tools to learn, share, and advocate for space exploration.

Volunteer as a space advocate.

Support Our Mission

  • Renew Membership
  • Society Projects

The Planetary Fund

Accelerate progress in our three core enterprises — Explore Worlds, Find Life, and Defend Earth. You can support the entire fund, or designate a core enterprise of your choice.

  • Strategic Framework
  • News & Press

The Planetary Society

Know the cosmos and our place within it.

Our Mission

Empowering the world's citizens to advance space science and exploration.

  • Explore Space
  • Take Action
  • Member Community
  • Account Center
  • “Exploration is in our nature.” - Carl Sagan

Bruce Murray Space Image Library

Highest resolution Voyager 1 color view of the Great Red Spot

The color in this mosaic was rather difficult to process. The WAC filters are significantly different from the corresponding NAC filters and the left/right edges are not covered by all three WAC filters. There are also some areas in the NAC mosaic where only green or violet was available (especially near the corners of the NAC area). The color is somewhat less accurate there.

For full functionality of this site it is necessary to enable JavaScript. Here are instructions on how to enable JavaScript in your web browser .

NASA Logo

Interstellar Messengers

The Voyager spacecraft against a sparkly blue background

Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

Mission Type

Science Targets

Latest News

NASA’s Voyager Team Focuses on Software Patch, Thrusters

voyager 1 camera type

NASA’s Voyager Will Do More Science With New Power Strategy

voyager 1 camera type

Edward Stone Retires After 50 Years as NASA Voyager’s Project Scientist

voyager 1 camera type

Engineers Solve Data Glitch on NASA’s Voyager 1

voyager 1 camera type

Voyager, NASA’s Longest-Lived Mission, Logs 45 Years in Space

The Interstellar Mission

After completing the first in-depth reconnaissance of the outer planets, the twin Voyagers are on a new mission to chart the edge of interstellar space.

The Golden Record

The contents of the golden record were selected for NASA by a committee led by Carl Sagan of Cornell University.

The Spacecraft

The twin Voyagers are escaping our solar system in different directions at more than 3 astronomical units (AU) a year.

A close up of the golden record. The label says "To the makers of music - all worlds, all times."

The Pale Blue Dot

The behind-the-scenes story of the making of Voyager 1's iconic image of Earth as "a mote of dust suspended in a sunbeam."

Earth as a tiny bluish dot suspended in a grainy beam of light.

Discover More Topics From NASA

Tendrils of hot plasma stream from the Sun.

Our Solar System

An illustration of a slice of a bright orange sun, with planets, a comet and asteroids against a blue-black backround.

Heliosphere

voyager 1 camera type

Image that reads Space Place and links to spaceplace.nasa.gov.

Voyager 1 and 2: The Interstellar Mission

An image of Neptune taken by the Voyager 2 spacecraft.

An image of Neptune taken by the Voyager 2 spacecraft. Image credit: NASA

NASA has beautiful photos of every planet in our solar system. We even have images of faraway Neptune , as you can see in the photo above.

Neptune is much too distant for an astronaut to travel there with a camera. So, how do we have pictures from distant locations in our solar system? Our photographers were two spacecraft, called Voyager 1 and Voyager 2!

An artist’s rendering of one of the Voyager spacecraft.

An artist’s rendering of one of the Voyager spacecraft. Image credit: NASA

The Voyager 1 and 2 spacecraft launched from Earth in 1977. Their mission was to explore Jupiter and Saturn —and beyond to the outer planets of our solar system. This was a big task. No human-made object had ever attempted a journey like that before.

The two spacecraft took tens of thousands of pictures of Jupiter and Saturn and their moons. The pictures from Voyager 1 and 2 allowed us to see lots of things for the first time. For example, they captured detailed photos of Jupiter's clouds and storms, and the structure of Saturn's rings .

Image of storms on Jupiter taken by the Voyager 1 spacecraft.

Image of storms on Jupiter taken by the Voyager 1 spacecraft. Image credit: NASA

Voyager 1 and 2 also discovered active volcanoes on Jupiter's moon Io , and much more. Voyager 2 also took pictures of Uranus and Neptune. Together, the Voyager missions discovered 22 moons.

Since then, these spacecraft have continued to travel farther away from us. Voyager 1 and 2 are now so far away that they are in interstellar space —the region between the stars. No other spacecraft have ever flown this far away.

Where will Voyager go next?

Watch this video to find out what's beyond our solar system!

Both spacecraft are still sending information back to Earth. This data will help us learn about conditions in the distant solar system and interstellar space.

The Voyagers have enough fuel and power to operate until 2025 and beyond. Sometime after this they will not be able to communicate with Earth anymore. Unless something stops them, they will continue to travel on and on, passing other stars after many thousands of years.

Each Voyager spacecraft also carries a message. Both spacecraft carry a golden record with scenes and sounds from Earth. The records also contain music and greetings in different languages. So, if intelligent life ever find these spacecraft, they may learn something about Earth and us as well!

A photo of the golden record that was sent into space on both Voyager 1 and Voyager 2.

A photo of the golden record that was sent into space on both Voyager 1 and Voyager 2. Image credit: NASA/JPL-Caltech

More about our universe!

A sign that says welcome to interstellar space

Where does interstellar space begin?

an illustration arrows pointing at stars on a dark sky

Searching for other planets like ours

an illustrated game box cover for the Galactic Explorer game

Play Galactic Explorer!

If you liked this, you may like:

Illustration of a game controller that links to the Space Place Games menu.

voyager 1 camera type

  • Object Information
  • Planetarium

voyager 1 camera type

Voyager 1 live position and data

This page shows Voyager 1 location and other relevant astronomical data in real time. The celestial coordinates, magnitude, distances and speed are updated in real time and are computed using high quality data sets provided by the JPL Horizons ephemeris service (see acknowledgements for details). The sky map shown in the background represents a rectangular portion of the sky 60x40 arcminutes wide. By comparison the diameter of the full Moon is about 30 arcmins, so the full horizontal extent of the map is approximately 2 full Moons wide. Depending on the device you are using, the map can be dragged horizondally or vertically using the mouse or touchscreen. The deep sky image in the background is provided by the Digitized Sky Survey ( acknowledgements ).

Current close conjunctions

List of bright objects (stars brighter than magnitude 9.0 and galaxies brighter than magmitude 14.0) close to Voyager 1 (less than 1.5 degrees):

Additional resources

  • 15 Days Ephemerides
  • Interactive Sky Map (Planetarium)
  • Rise & Set Times
  • Distance from Earth

Astronomy databases

  • The Digitized Sky Survey, a photographic survey of the whole sky created using images from different telescopes, including the Oschin Schmidt Telescope on Palomar Mountain
  • The Hipparcos Star Catalogue, containing more than 100.000 bright stars
  • The PGC 2003 Catalogue, containing information about 1 million galaxies
  • The GSC 2.3 Catalogue, containing information about more than 2 billion stars and galaxies
  • Share full article

Advertisement

Supported by

Voyager 1, First Craft in Interstellar Space, May Have Gone Dark

The 46-year-old probe, which flew by Jupiter and Saturn in its youth and inspired earthlings with images of the planet as a “Pale Blue Dot,” hasn’t sent usable data from interstellar space in months.

voyager 1 camera type

By Orlando Mayorquin

When Voyager 1 launched in 1977, scientists hoped it could do what it was built to do and take up-close images of Jupiter and Saturn. It did that — and much more.

Voyager 1 discovered active volcanoes, moons and planetary rings, proving along the way that Earth and all of humanity could be squished into a single pixel in a photograph, a “ pale blue dot, ” as the astronomer Carl Sagan called it. It stretched a four-year mission into the present day, embarking on the deepest journey ever into space.

Now, it may have bid its final farewell to that faraway dot.

Voyager 1 , the farthest man-made object in space, hasn’t sent coherent data to Earth since November. NASA has been trying to diagnose what the Voyager mission’s project manager, Suzanne Dodd, called the “most serious issue” the robotic probe has faced since she took the job in 2010.

The spacecraft encountered a glitch in one of its computers that has eliminated its ability to send engineering and science data back to Earth.

The loss of Voyager 1 would cap decades of scientific breakthroughs and signal the beginning of the end for a mission that has given shape to humanity’s most distant ambition and inspired generations to look to the skies.

“Scientifically, it’s a big loss,” Ms. Dodd said. “I think — emotionally — it’s maybe even a bigger loss.”

Voyager 1 is one half of the Voyager mission. It has a twin spacecraft, Voyager 2.

Launched in 1977, they were primarily built for a four-year trip to Jupiter and Saturn , expanding on earlier flybys by the Pioneer 10 and 11 probes.

The Voyager mission capitalized on a rare alignment of the outer planets — once every 175 years — allowing the probes to visit all four.

Using the gravity of each planet, the Voyager spacecraft could swing onto the next, according to NASA .

The mission to Jupiter and Saturn was a success.

The 1980s flybys yielded several new discoveries, including new insights about the so-called great red spot on Jupiter, the rings around Saturn and the many moons of each planet.

Voyager 2 also explored Uranus and Neptune , becoming in 1989 the only spacecraft to explore all four outer planets.

voyager 1 camera type

Voyager 1, meanwhile, had set a course for deep space, using its camera to photograph the planets it was leaving behind along the way. Voyager 2 would later begin its own trek into deep space.

“Anybody who is interested in space is interested in the things Voyager discovered about the outer planets and their moons,” said Kate Howells, the public education specialist at the Planetary Society, an organization co-founded by Dr. Sagan to promote space exploration.

“But I think the pale blue dot was one of those things that was sort of more poetic and touching,” she added.

On Valentine’s Day 1990, Voyager 1, darting 3.7 billion miles away from the sun toward the outer reaches of the solar system, turned around and snapped a photo of Earth that Dr. Sagan and others understood to be a humbling self-portrait of humanity.

“It’s known the world over, and it does connect humanity to the stars,” Ms. Dodd said of the mission.

She added: “I’ve had many, many many people come up to me and say: ‘Wow, I love Voyager. It’s what got me excited about space. It’s what got me thinking about our place here on Earth and what that means.’”

Ms. Howells, 35, counts herself among those people.

About 10 years ago, to celebrate the beginning of her space career, Ms. Howells spent her first paycheck from the Planetary Society to get a Voyager tattoo.

Though spacecraft “all kind of look the same,” she said, more people recognize the tattoo than she anticipated.

“I think that speaks to how famous Voyager is,” she said.

The Voyagers made their mark on popular culture , inspiring a highly intelligent “Voyager 6” in “Star Trek: The Motion Picture” and references on “The X Files” and “The West Wing.”

Even as more advanced probes were launched from Earth, Voyager 1 continued to reliably enrich our understanding of space.

In 2012, it became the first man-made object to exit the heliosphere, the space around the solar system directly influenced by the sun. There is a technical debate among scientists around whether Voyager 1 has actually left the solar system, but, nonetheless, it became interstellar — traversing the space between stars.

That charted a new path for heliophysics, which looks at how the sun influences the space around it. In 2018, Voyager 2 followed its twin between the stars.

Before Voyager 1, scientific data on the sun’s gases and material came only from within the heliosphere’s confines, according to Dr. Jamie Rankin, Voyager’s deputy project scientist.

“And so now we can for the first time kind of connect the inside-out view from the outside-in,” Dr. Rankin said, “That’s a big part of it,” she added. “But the other half is simply that a lot of this material can’t be measured any other way than sending a spacecraft out there.”

Voyager 1 and 2 are the only such spacecraft. Before it went offline, Voyager 1 had been studying an anomalous disturbance in the magnetic field and plasma particles in interstellar space.

“Nothing else is getting launched to go out there,” Ms. Dodd said. “So that’s why we’re spending the time and being careful about trying to recover this spacecraft — because the science is so valuable.”

But recovery means getting under the hood of an aging spacecraft more than 15 billion miles away, equipped with the technology of yesteryear. It takes 45 hours to exchange information with the craft.

It has been repeated over the years that a smartphone has hundreds of thousands of times Voyager 1’s memory — and that the radio transmitter emits as many watts as a refrigerator lightbulb.

“There was one analogy given that is it’s like trying to figure out where your cursor is on your laptop screen when your laptop screen doesn’t work,” Ms. Dodd said.

Her team is still holding out hope, she said, especially as the tantalizing 50th launch anniversary in 2027 approaches. Voyager 1 has survived glitches before, though none as serious.

Voyager 2 is still operational, but aging. It has faced its own technical difficulties too.

NASA had already estimated that the nuclear-powered generators of both spacecrafts would likely die around 2025.

Even if the Voyager interstellar mission is near its end, the voyage still has far to go.

Voyager 1 and its twin, each 40,000 years away from the next closest star, will arguably remain on an indefinite mission.

“If Voyager should sometime in its distant future encounter beings from some other civilization in space, it bears a message,” Dr. Sagan said in a 1980 interview .

Each spacecraft carries a gold-plated phonograph record loaded with an array of sound recordings and images representing humanity’s richness, its diverse cultures and life on Earth.

“A gift across the cosmic ocean from one island of civilization to another,” Dr. Sagan said.

Orlando Mayorquin is a general assignment and breaking news reporter based in New York. More about Orlando Mayorquin

What’s Up in Space and Astronomy

Keep track of things going on in our solar system and all around the universe..

Never miss an eclipse, a meteor shower, a rocket launch or any other 2024 event  that’s out of this world with  our space and astronomy calendar .

Scientists may have discovered a major flaw in their understanding of dark energy, a mysterious cosmic force . That could be good news for the fate of the universe.

A new set of computer simulations, which take into account the effects of stars moving past our solar system, has effectively made it harder to predict Earth’s future and reconstruct its past.

Dante Lauretta, the planetary scientist who led the OSIRIS-REx mission to retrieve a handful of space dust , discusses his next final frontier.

A nova named T Coronae Borealis lit up the night about 80 years ago. Astronomers say it’s expected to put on another show  in the coming months.

Is Pluto a planet? And what is a planet, anyway? Test your knowledge here .

  • Skip to main content
  • Keyboard shortcuts for audio player

The aging Voyager 1 spacecraft has a serious glitch, and NASA is pondering risky fixes

Nell Greenfieldboyce 2010

Nell Greenfieldboyce

The Voyager 1 probe, the first human-made object to reach the space between stars, has suffered a serious problem that NASA experts are struggling to understand and repair.

ARI SHAPIRO, HOST:

The Voyager 1 spacecraft rocketed off our planet in 1977. It's now about 15 billion miles away. That's farther out than any other object made by humans. And the spacecraft still talks to Earth. But as NPR's Nell Greenfieldboyce reports, lately its messages don't make any sense.

NELL GREENFIELDBOYCE, BYLINE: Voyager 1's problem started a few months ago, back in mid-November. Suzanne Dodd is the Voyager project manager.

SUZANNE DODD: It basically stopped talking to us in a coherent manner.

GREENFIELDBOYCE: The spacecraft is just sending back alternating ones and zeros. Her team has tried the usual tricks to try to reset things with no luck. It looks like there's a problem with the onboard computer that takes information and packages it up to send home. Dodd says this technology is primitive compared to, say, a car key fob.

DODD: The button you press to open the door of your car - that has more compute power than the Voyager spacecrafts do. You know, it's remarkable that they keep flying and they and that they've flown for 46-plus years.

GREENFIELDBOYCE: Voyager 1 and its twin, Voyager 2, have outlived many of those who designed and built them. To try to fix Voyager 1's current woes, the dozen or so people on Dodd's team have had to pore over yellowed documents and old mimeographs.

DODD: They're doing a lot of work to try and get into the heads of the original developers and figure out why they designed something the way they did and what we could possibly try that might give us some answers to what's going wrong with the spacecraft.

GREENFIELDBOYCE: She says they have a list of things to try. Since their go-to approaches haven't worked, they'll have to take measures that are more bold and risky. This could take weeks, months of sending commands to the spacecraft. Voyager 1 is so distant, it takes almost a whole day for a signal to travel out there, then a whole day for its response to return.

DODD: So we'll keep trying, and it won't be quick.

GREENFIELDBOYCE: In the meantime, Voyager 1's discombobulation is a bummer for researchers like Stella Ocker. She's with Caltech and the Carnegie Observatories.

STELLA OCKER: We haven't been getting science data since this anomaly started, and what that means is that we don't know what the environment that the spacecraft is traveling through looks like.

GREENFIELDBOYCE: That environment isn't just empty darkness. There's gases, dust, cosmic rays. Only the twin Voyager probes are far away enough to sample this cosmic stew, and only Voyager 1 is still able to take the particular measurements she needs.

OCKER: So the science that I'm really interested in doing is actually only possible with Voyager 1.

GREENFIELDBOYCE: Now, she wasn't even born when the Voyagers launched. For other scientists who've been with the Voyager program from the start, Voyager 1 is like an old, dear friend who suddenly has been hit with a terrible illness.

TOM KRIMIGIS: Well, frankly, I'm very worried.

GREENFIELDBOYCE: Tom Krimigis is with the Johns Hopkins University's Applied Physics Lab.

KRIMIGIS: My motto for a long time was 50 years or bust (laughter), but we're sort of approaching that.

GREENFIELDBOYCE: So even if this current crisis gets solved in a couple of years, the ebbing power supply will force managers to start turning off science instruments one by one. The very last instrument might keep going until 2030. After that, Krimigis says both of these legendary space probes will basically become space junk.

KRIMIGIS: Pains me to say that.

GREENFIELDBOYCE: And while the spacecraft will keep moving outward, each carrying a set of golden records that have recorded greetings in many languages, Krimigis doubts that any alien will ever stumble across Voyager and have a listen. Nell Greenfieldboyce, NPR News.

(SOUNDBITE OF MNELIA SONG, "CLOSURE")

Copyright © 2024 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by an NPR contractor. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.

NASA's Voyager 1 sends readable message to Earth after 4 nail-biting months of gibberish

After four months of being unable to detect comprehensible data from the Voyager 1 spacecraft, NASA scientists have had fresh luck after sending a "poke."

Artists conception of Voyager 1 spacecraft entering interstellar space

After a nail-biting four months, NASA has finally received a comprehensible signal from its Voyager 1 spacecraft. 

Since November 2023, the almost-50-year-old spacecraft has been experiencing trouble with its onboard computers. Although Voyager 1, one of NASA's longest-lived space missions, has been sending a steady radio signal to Earth, it hasn't contained any usable data , which has perplexed scientists. 

Now, in response to a command prompt, or "poke," sent from Earth on March 1, NASA has received a new signal from Voyager 1 that engineers have been able to decode. Mission scientists hope this information may help them explain the spacecraft's recent communication problems. 

"The source of the issue appears to be with one of three onboard computers, the flight data subsystem (FDS), which is responsible for packaging the science and engineering data before it's sent to Earth by the telemetry modulation unit," NASA said in a blog post Wednesday (March 13) .

Related: NASA's 46-year-old Voyager 1 probe is no longer transmitting data

On March 1, as part of efforts to find a solution to Voyager 1's computer issues, NASA sent a command to the FDS on the spacecraft, instructing it to use different sequences in its software package, which would effectively mean skirting around any data that may be corrupted. 

Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth. This means any radio signals sent from our planet take 22.5 hours to reach the spacecraft, with any response taking the same time to be picked up by antennas on Earth. 

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

On March 3, NASA detected activity from one section of the FDS that differed from the "unreadable data stream" they'd previously been receiving. Four days later, engineers started the heavy task of trying to decode this signal. By March 10, the team discovered that the signal contained a readout of the entire FDS memory. This included the instructions for what the FDS needed to do, any values in its code that can be changed depending on commands from NASA or the spacecraft's status, and downloadable science or engineering data.  

Voyager 1 has ventured farther from Earth than any other human-made object . It was launched in 1977, within weeks of its twin spacecraft , Voyager 2. The initial aim of the mission was to explore Jupiter and Saturn . Yet after almost five decades, and with countless discoveries under their belts, the mission continues beyond the boundaries of the solar system . 

— NASA hears 'heartbeat' signal from Voyager 2 probe a week after losing contact

— Historic space photo of the week: Voyager 2 spies a storm on Saturn 42 years ago

— NASA reestablishes full contact with Voyager 2 probe after nail-biting 2-week blackout

NASA scientists will now "compare this readout to the one that came down before the issue arose and look for discrepancies in the code and the variables to potentially find the source of the ongoing issue," they said in the blog post.  

However, NASA stressed that it will take time to determine if any of the insights gained from this new signal can be used to solve Voyager 1's long-standing communication issues. 

Emily Cooke

Emily is a health news writer based in London, United Kingdom. She holds a bachelor's degree in biology from Durham University and a master's degree in clinical and therapeutic neuroscience from Oxford University. She has worked in science communication, medical writing and as a local news reporter while undertaking journalism training. In 2018, she was named one of MHP Communications' 30 journalists to watch under 30. ( [email protected]

NASA's downed Ingenuity helicopter has a 'last gift' for humanity — but we'll have to go to Mars to get it

Object that slammed into Florida home was indeed space junk from ISS, NASA confirms

'Uncharted territory': El Niño to flip to La Niña in what could be the hottest year on record

  • Bruzote I have an inside source who says the message said, "Be sure to drink your Ovaltine." Reply
  • Grumpy-DC I love Ovaltine. Both flavors. And I remember "Captain Midnight" sponsored by same. Reply
Grumpy-DC said: I love Ovaltine. Both flavors. And I remember "Captain Midnight" sponsored by same.
  • View All 3 Comments

Most Popular

  • 2 The universe may be dominated by particles that break causality and move faster than light, new paper suggests
  • 3 Nightmare fish may explain how our 'fight or flight' response evolved
  • 4 Intel unveils largest-ever AI 'neuromorphic computer' that mimics the human brain
  • 5 Lyrid meteor shower 2024: How to watch stunning shooting stars and 'fireballs' during the event's peak this week
  • 2 Intel unveils largest-ever AI 'neuromorphic computer' that mimics the human brain
  • 3 50-foot 'king of the serpents' may have been the biggest snake to ever live
  • 4 Scientists are one step closer to knowing the mass of ghostly neutrinos — possibly paving the way to new physics
  • 5 Watch tigress and her cubs feasting on crocodile they killed in rare footage

voyager 1 camera type

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Galleries of Images Voyager Took

The Voyager 1 and 2 spacecraft explored Jupiter, Saturn, Uranus and Neptune before starting their journey toward interstellar space. Here you'll find some of those iconic images, including "The Pale Blue Dot" - famously described by Carl Sagan - and what are still the only up-close images of Uranus and Neptune.

Jupiters Great Spot

Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and its encounter continued into August. They took more than 33,000 pictures of Jupiter and its five major satellites.

Image of Saturn

The Voyager 1 and 2 Saturn encounters occurred nine months apart, in November 1980 and August 1981. Voyager 1 is leaving the solar system. Voyager 2 completed its encounter with Uranus in January 1986 and with Neptune in August 1989, and is now also en route out of the solar system.

Image of Uranus

NASA's Voyager 2 spacecraft flew closely past distant Uranus, the seventh planet from the Sun, in January. At its closet, the spacecraft came within 81,800 kilometers (50,600 miles) of Uranus's cloudtops on Jan. 24, 1986. Voyager 2 radioed thousands of images and voluminous amounts of other scientific data on the planet, its moons, rings, atmosphere, interior and the magnetic environment surrounding Uranus.

Image of Neptune

In the summer of 1989, NASA's Voyager 2 became the first spacecraft to observe the planet Neptune, its final planetary target. Passing about 4,950 kilometers (3,000 miles) above Neptune's north pole, Voyager 2 made its closest approach to any planet since leaving Earth 12 years ago. Five hours later, Voyager 2 passed about 40,000 kilometers (25,000 miles) from Neptune's largest moon, Triton, the last solid body the spacecraft will have an opportunity to study.

Image of Neptune

This narrow-angle color image of the Earth, dubbed 'Pale Blue Dot', is a part of the first ever 'portrait' of the solar system taken by Voyager 1. The spacecraft acquired a total of 60 frames for a mosaic of the solar system from a distance of more than 4 billion miles from Earth and about 32 degrees above the ecliptic. From Voyager's great distance Earth is a mere point of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. This blown-up image of the Earth was taken through three color filters -- violet, blue and green -- and recombined to produce the color image. The background features in the image are artifacts resulting from the magnification.

IMAGES

  1. Voyager-1 spacecraft: 40 years of history and interstellar flight

    voyager 1 camera type

  2. El Viaje De La Voyager 1 y 2 1080P HD

    voyager 1 camera type

  3. Where Truly Is Voyager 1?

    voyager 1 camera type

  4. Voyager 1 Reaches Interstellar Space

    voyager 1 camera type

  5. TechComm Voyager One 1080P Sports Action Wi-Fi Camera with CMOS Sensor

    voyager 1 camera type

  6. Voyager 1

    voyager 1 camera type

VIDEO

  1. Voyager 1 Transmits Unknown Message

  2. Last message of Voyager 1|voyager 1 distance covered ? Voyager 1 😱 #fact #amazingfacts #shorts

  3. Voyager 1's Mysterious Decline

  4. 3 MINUTES AGO: Voyager 1 Captures Most Terrifying Image Ever Seen In History!

  5. Voyager 1 is still communicating!!! #physics #science #space

  6. The Remarkable Journey of Voyager 1

COMMENTS

  1. Voyager

    Wide-angle and narrow-angle cameras off to save power (Feb. 14, 1990) Wide-angle and narrow angle cameras off to save power (Oct. 10 and Dec. 5, 1989) ... Both Voyager 1 and Voyager 2 have reached "Interstellar space" and each continue their unique journey through the Universe. In the NASA Eyes on the Solar System app, you can see the real ...

  2. Voyager 1

    Spacecraft type: Mariner Jupiter-Saturn: Manufacturer: Jet Propulsion Laboratory: Launch mass: 815 kg (1,797 lb) ... Voyager 1 is a space probe launched by NASA on September 5, ... the operation of the cameras for visible light is not autonomous, ...

  3. Exploring the Solar System with the Voyager Spacecraft's Cameras

    NASA turned off the camera system for Voyager 1 after it took the "Solar System Family Portrait" in 1990, while Voyager 2 took its last photo at its Neptune encounter in 1989. ... This artistic interpretation of Jupiter's atmosphere illustrates the type of image recorded through various filter wheels. Photo by Nasa, interpretation by Mark Hughes .

  4. Voyager

    The ISS is a modified version of the slow scan vidicon camera designs that were used in the earlier Mariner flights. The ISS consists of two television-type cameras, each with 8 filters in a commandable Filter Wheel mounted in front of the vidicons. One has a low resolution 200 mm wide-angle lens with an aperture of f/3, while the other uses a ...

  5. Voyager 1: Facts about Earth's farthest spacecraft

    Voyager 1 is the first spacecraft to travel beyond the solar system and enter interstellar space. ... (a type of fast-spinning stellar corpse known as a ... Voyager's higher-resolution camera ...

  6. The Brains of the Voyager Spacecraft: Command, Data, and Attitude

    Cameras, Polarimeters, and Magnetometers; Infrared Interferometer, Spectrometer, and Radio Astronomy; Launched in 1977, the Voyager 1 and 2 probes were both cutting-edge pieces of technology for their time. The computers at the heart of their operations consisted of three systems, each with dual-redundancy, that worked together to enable the ...

  7. astronomy

    The Narrow angle Camera (NAC) - 800x800. The Wide Angle Camera (WAC) - 800x800. The Photopolarimeter System (PPS) - One pixel - an EMR 510-E-06 photomultiplier tube (PMT) with a tri-alkali (S-20) photocathode. Data was stored on a digital tape drive and then played back during transmission periods.

  8. Voyager 1

    About the mission. Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence. Launched just shortly after its twin spacecraft, Voyager 2, in 1977, Voyager 1 explored the Jovian and Saturnian systems discovering new moons, active volcanoes and a wealth of data about the outer solar system.

  9. Mission Overview

    In August 2012, Voyager 1 made the historic entry into interstellar space, the region between stars, filled with material ejected by the death of nearby stars millions of years ago. Voyager 2 entered interstellar space on November 5, 2018 and scientists hope to learn more about this region. Both spacecraft are still sending scientific ...

  10. 45 Years Ago: Voyager 1 Begins its Epic Journey to the Outer ...

    Today, 45 years after its launch and 14.6 billion miles from Earth, four of Voyager 1's 11 instruments continue to return useful data, having now spent 10 years in interstellar space. Signals from the spacecraft take nearly 22 hours to reach Earth, and 22 hours for Earth-based signals to reach the spacecraft.

  11. Highest resolution Voyager 1 color view of the Great Red Spot

    At ~6 km/pixel, this is the highest resolution pre-Juno color data for Jupiter (all of the higher resolution Voyager images are clear filter images). Lower resolution orange, green and violet images from Voyager 1's wide angle camera (WAC) are also used to show the GRS periphery and surrounding areas. Color, contrast, and sharpness have been ...

  12. Voyager

    Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

  13. Voyager 1

    Voyager 1, robotic U.S. interplanetary probe launched in 1977 that visited Jupiter and Saturn and was the first spacecraft to reach interstellar space. Voyager 1 swung by Jupiter on March 5, 1979, and then headed for Saturn, which it reached on November 12, 1980. ... Feedback Type Your Feedback. Submit ... all taken with a wide-angle camera on ...

  14. Voyager 1 and 2: The Interstellar Mission

    The Voyager 1 and 2 spacecraft launched from Earth in 1977. Their mission was to explore Jupiter and Saturn —and beyond to the outer planets of our solar system. This was a big task. No human-made object had ever attempted a journey like that before. The two spacecraft took tens of thousands of pictures of Jupiter and Saturn and their moons.

  15. Voyager

    Voyager 1 flew within 64,200 kilometers (40,000 miles) of the cloud tops, while Voyager 2 came within 41,000 kilometers (26,000 miles). Saturn is the second largest planet in the solar system. It takes 29.5 Earth years to complete one orbit of the Sun, and its day was clocked at 10 hours, 39 minutes.

  16. Voyager 1 Tracker

    Voyager 1 live position and data. This page shows Voyager 1 location and other relevant astronomical data in real time. The celestial coordinates, magnitude, distances and speed are updated in real time and are computed using high quality data sets provided by the JPL Horizons ephemeris service (see acknowledgements for details). The sky map shown in the background represents a rectangular ...

  17. Voyager 1, First Craft in Interstellar Space, May Have Gone Dark

    The Pale Blue Dot is a photograph of Earth taken Feb. 14, 1990, by NASA's Voyager 1 at a distance of 3.7 billion miles (6 billion kilometers) from the Sun. NASA/JPL-Caltech. Voyager 1, meanwhile ...

  18. The aging Voyager 1 spacecraft has a serious glitch, and NASA is ...

    The Voyager 1 probe, the first human-made object to reach the space between stars, has suffered a serious problem that NASA experts are struggling to understand and repair. ARI SHAPIRO, HOST:

  19. Voyager

    The resolution of the Voyager narrow-angle television cameras is sharp enough to read a newspaper headline at a distance of 1 km (0.62 mi). Pele, the largest of the volcanoes seen on Jupiter's moon Io, is throwing sulfur and sulfur-dioxide products to heights 30 times that of Mount Everest, and the fallout zone covers an area the size of France.

  20. NASA's Voyager 1 sends readable message to Earth after 4 nail-biting

    Voyager 1 has ventured farther from Earth than any other human-made object. It was launched in 1977, ... World's fastest camera captures footage at 156 trillion frames per second. 2.

  21. Voyager

    Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and its encounter continued into August. ... less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size ...