NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Colorado River

NASA-Led Study Provides New Global Accounting of Earth’s Rivers

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Psyche spacecraft is shown in a clean room

NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

mars travel nasa

NASA Shares Lessons of Human Systems Integration with Industry

Most mountains on the Earth are formed as plates collide and the crust buckles. Not so for the Moon, where mountains are formed as a result of impacts as seen by NASA Lunar Reconnaissance Orbiter.

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

three men standing beside a small, black piece of space satellite hardware

NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Mars Science Laboratory: Curiosity Rover

Mars Science Laboratory: Curiosity Rover

Hubble Spots a Magnificent Barred Galaxy

Hubble Spots a Magnificent Barred Galaxy

The Crab Nebula, the result of a bright supernova explosion seen by Chinese and other astronomers in the year 1054, is 6,500 light-years from Earth. At its center is a neutron star, a super-dense star produced by the supernova. As it rotates at about 30 times per second, its beam of radiation passes over the Earth every orbit, like a cosmic lighthouse. As the young pulsar slows down, large amounts of energy are injected into its surroundings. In particular, a high-speed wind of matter and anti-matter particles plows into the surrounding nebula, creating a shock wave that forms the expanding ring seen in the movie. Jets from the poles of the pulsar spew X-ray emitting matter and antimatter particles in a direction perpendicular to the ring. This image show the X-ray data from Chandra along with infrared data from the Webb space telescope.

NASA’s Chandra Releases Doubleheader of Blockbuster Hits

Explore the Universe with the First E-Book from NASA’s Fermi

Explore the Universe with the First E-Book from NASA’s Fermi

Julia Chavez

NASA Grant Brings Students at Underserved Institutions to the Stars

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

mars travel nasa

NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

Swimming in water, A beaver family nibbles on aspen branches in Spawn Creek, Utah.

NASA Data Helps Beavers Build Back Streams

The PACE spacecraft sending data down over radio frequency links to an antenna on Earth. The science images shown are real photos from the PACE mission.

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

mars travel nasa

Washington State High Schooler Wins 2024 NASA Student Art Contest

mars travel nasa

NASA STEM Artemis Moon Trees

mars travel nasa

Kiyun Kim: From Intern to Accessibility Advocate

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Nasa’s perseverance rover is midway to mars, jet propulsion laboratory, work continues en route, more about the mission.

Illustration of the Mars 2020 spacecraft in interplanetary space

Sometimes half measures can be a good thing – especially on a journey this long. The agency’s latest rover only has about 146 million miles left to reach its destination.    

NASA’s Mars 2020 Perseverance rover mission has logged a lot of flight miles since being lofted skyward on July 30 – 146.3 million miles (235.4 million kilometers) to be exact. Turns out that is exactly the same distance it has to go before the spacecraft hits the Red Planet’s atmosphere like a 11,900 mph (19,000 kph) freight train on Feb. 18, 2021.

“At 1:40 p.m. Pacific Time today, our spacecraft will have just as many miles in its metaphorical rearview mirror as it will out its metaphorical windshield,” said Julie Kangas, a navigator working on the Perseverance rover mission at NASA’s Jet Propulsion Laboratory in Southern California. “While I don’t think there will be cake, especially since most of us are working from home, it’s still a pretty neat milestone. Next stop, Jezero Crater .”

The Sun’s gravitational influence plays a significant role in shaping not just spacecraft trajectories to Mars (as well as to everywhere else in the solar system), but also the relative movement of the two planets. So Perseverance’s route to the Red Planet follows a curved trajectory rather than an arrow-straight path.

NASA’s Mars 2020 Perseverance rover has logged 146.3 million (235.4 million kilometers) of space miles – exactly half of what will be covered before reaching the Red Planet. View the full interactive experience at Eyes on the Solar System . Image Credit: NASA/JPL-Caltech

“Although we’re halfway into the distance we need to travel to Mars, the rover is not halfway between the two worlds,” Kangas explained. “In straight-line distance, Earth is 26.6 million miles [42.7 million kilometers] behind Perseverance and Mars is 17.9 million miles [28.8 million kilometers] in front.”

At the current distance, it takes 2 minutes, 22 seconds for a transmission to travel from mission controllers at JPL via the Deep Space Network to the spacecraft. By time of landing, Perseverance will have covered 292.5 million miles (470.8 million kilometers), and Mars will be about 130 million miles (209 million kilometers) away from Earth; at that point, a transmission will take about 11.5 minutes to reach the spacecraft.

NASA's Mars 2020 Perseverance rover reached its halfway point

The mission team continues to check out spacecraft systems big and small during interplanetary cruise. Perseverance’s RIMFAX and MOXIE instruments were tested and determined to be in good shape on Oct. 15. MEDA got a thumbs up on Oct. 19. There was even a line item to check the condition of the X-ray tube in the PIXL instrument on Oct. 16, which also went as planned.

“If it is part of our spacecraft and electricity runs through it, we want to confirm it is still working properly following launch,” said Keith Comeaux, deputy chief engineer for the Mars 2020 Perseverance rover mission. “Between these checkouts – along with charging the rover’s and Mars Helicopter’s batteries , uploading files and sequences for surface operations, and planning for and executing trajectory correction maneuvers – our plate is full right up to landing.”

A key objective of Perseverance’s mission on Mars is astrobiology , including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust). 

Subsequent missions, currently under consideration by NASA in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these cached samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA’s Artemis lunar exploration plans .

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance and Curiosity rovers.

For more about Perseverance:

mars.nasa.gov/mars2020/

nasa.gov/perseverance

For more information about NASA’s Mars missions, go to:

https://www.nasa.gov/mars

DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 [email protected]

Grey Hautaluoma / Alana Johnson NASA Headquarters, Washington 202-358-0668 / 202-358-1501 [email protected]  /  [email protected]

NASA Logo

Mars Exploration

For over 60 years, NASA has been in pursuit of answering science's biggest questions – was, or is , Mars a habitable world? 

Mars Exploration Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four broad, overarching goals for Mars exploration.

Water carved channels and transported sediments form fans and deltas within lake basins in this image of Mars' Jezero crater.

Mars is the only planet we know of inhabited entirely by robots.

Artist's concept depicts astronauts and human habitats on Mars.

From Robots to Humans

Recorded observations of Mars date back more than 4,000 years. Led by our curiosity of the cosmos, NASA has sent a carefully selected international fleet of robotic orbiters, landers and rovers to keep a continuous flow of scientific information and discovery from Mars. The science and technology developed through Mars Exploration missions will enable humans to one day explore the Red Planet in person. Artist's concept depicts astronauts and human habitats on Mars.

Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a rover take on human-like features, such as “heads,” “bodies,” and “arms and legs."

A carefully selected international fleet of robotic orbiters, landers, and rovers keeps a continuous flow of scientific information and discovery from Mars.

Mars Missions

Perseverance Selfie with Ingenuity

Mars 2020: Perseverance Rover

The Mars 2020 mission Perseverance rover is the first step of a journey that would return Mars samples to Earth. (2020-present)

Rovers, helicopters, and rockets on Mars showing the robots that would collect and return a Mars sample

Mars Sample Return

NASA and ESA (European Space Agency) are planning ways to bring the first samples of Mars material back to Earth for detailed study.

Rover on Mars.

EXOMars Program

ESA’s (European Space Agency) Exobiology on Mars program consists of two missions: Trace Gas Orbiter and the Rosalind Franklin rover.

InSight

InSight was the first space robotic explorer to study in-depth the "inner space" of Mars: its crust, mantle, and core. (2018-2022)

artist's concept of MAVEN and Mars

MAVEN is obtaining critical measurements of Mars' atmosphere to help understand dramatic climate change over the planet's history. (2013-present)

Illustration of Mars Reconnaissance Orbiter over Mars.

Mars Reconnaissance Orbiter

MRO studies the planet's atmosphere and terrain from orbit and serves as a key data relay station for other Mars missions. (2005-present)

Mars Curiosity Rover Selfie

Mars Science Laboratory: Curiosity Rover

Curiosity is investigating Mars to determine whether the Red Planet ever was habitable to microbial life. (2011-present)

Photo of surface of Mars with Phoenix scoop

Mars Phoenix

Phoenix carried a complex suite of instruments to look for signs of water-ice in a region farther north than any previous mission. (2007-2008)

Sprit rover on Mars, artist rendition

Mars Exploration Rovers: Spirit and Opportunity

A pair of Mars rovers that used field geology and atmospheric observations as they looked for signs of ancient water activity. (2003-2010)

Spacecraft flying over Mars

Mars Express (ESA)

NASA is contributing advanced radar and radio relay systems to this ESA-ASI mission searching for sub-surface water from Mars orbit. (2003-present)

Mars Odyssey orbiter over the north polar region

2001 Mars Odyssey

NASA's longest-lasting spacecraft at Mars is making the first global map of the amount and distribution of chemical elements and minerals that make up the Martian surface. (2001-present)

Spacecraft lander on Mars.

Mars Polar Lander/Deep Space 2

Mars Polar Lander's mission was to dig for water ice near the edge of the south polar cap and deploy two small surface probes, but all spacecraft were lost on arrival. (1999)

Spacecraft in orbit over Mars.

Mars Climate Orbiter

Designed to function as an interplanetary weather satellite and a communications relay for Mars Polar Lander, Mars Climate Orbiter was lost on arrival after entering the atmosphere too low. (1999-1999)

Mars Global Surveyor's Articulated High Gain Antenna.

Mars Global Surveyor

Mars Global Surveyor studied the entire Martian surface, atmosphere, and interior, discovering repeatable weather patterns, gully formation, new boulder tracks, and recent impact craters. (1996-2006)

Mars Pathfinder and Sojourner rover on Mars in 1997.

Mars Pathfinder

Mars Pathfinder demonstrated a new way to deliver an instrumented lander, and the first robotic rover, to the planet's surface, from which it returned data long past its primary design life. (1996-1997)

Artist's image of a spacecraft in orbit over Mars

Mars Observer

Mars Observer was designed to study the geology, geophysics, and climate of Mars, but contact with the spacecraft was lost shortly before it was set to enter orbit around the planet. (1992-1993)

U.S. flag visible on Viking lander with Martian terrain on horizon

Vikings 1 & 2

The first U.S. mission to land a spacecraft safely on Mars and return images of the surface, Viking 1 was part of a pair of probes seeking signs of life on Mars. (1975-1982 )

Mariner 9 spacecraft

Mars Mariner Missions

NASA's Mariner 9, launched days after Mariner 8, was the first spacecraft to orbit another planet and to orbit Mars, mapping 85% of the surface. (1971-1972)

The Future of Mars

NASA is reimagining the future of Mars exploration, driving new scientific discoveries, and preparing for humans on Mars. NASA’s Mars Exploration Program will focus the next two decades on its science-driven systemic approach on these strategic goals: exploring for potential life, understanding the geology and climate of Mars, and preparation for human exploration.

Ingenuity Mars Helicopter at Airfield Mu. The helicopter is just below and to the left of center in the image. It is about 720 feet (220 meters) away from the rover. The approximately 4-foot-wide (1.2-meter-wide) split boulder, which appears to be directly in front and to the right of the helicopter, is actually about 380 feet (115 meters) in front of the rotorcraft.

Discover More Topics From NASA

Solar System Exploration

Orange sun with colorful planets trailing out to one side.

Asteroids, Comets & Meteors

Two Very Different Asteroids

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars is one of Earth's two closest planetary neighbors (Venus is the other). Mars is one of the easiest planets to spot in the night sky – it looks like a bright red point of light.

Despite being inhospitable to humans, robotic explorers – like NASA's new Perseverance rover – are serving as pathfinders to eventually get humans to the surface of the Red Planet.

Go farther: Mars exploration and missions >

Mars was named by the ancient Romans for their god of war because its reddish color was reminiscent of blood. Other civilizations also named the planet for this attribute – for example, the Egyptians called it "Her Desher," meaning "the red one." Even today, it is frequently called the "Red Planet" because iron minerals in the Martian dirt oxidize, or rust, causing the surface to look red.

Potential for Life

Scientists don't expect to find living things currently thriving on Mars. Instead, they're looking for signs of life that existed long ago, when Mars was warmer and covered with water.

Size and Distance

With a radius of 2,106 miles (3,390 kilometers), Mars is about half the size of Earth. If Earth were the size of a nickel, Mars would be about as big as a raspberry.

From an average distance of 142 million miles (228 million kilometers), Mars is 1.5 astronomical units away from the Sun. One astronomical unit (abbreviated as AU), is the distance from the Sun to Earth. From this distance, it takes sunlight 13 minutes to travel from the Sun to Mars.

Orbit and Rotation

As Mars orbits the Sun, it completes one rotation every 24.6 hours, which is very similar to one day on Earth (23.9 hours). Martian days are called sols – short for "solar day." A year on Mars lasts 669.6 sols, which is the same as 687 Earth days.

Mars' axis of rotation is tilted 25 degrees with respect to the plane of its orbit around the Sun. This is another similarity with Earth, which has an axial tilt of 23.4 degrees. Like Earth, Mars has distinct seasons, but they last longer than seasons here on Earth since Mars takes longer to orbit the Sun (because it's farther away). And while here on Earth the seasons are evenly spread over the year, lasting 3 months (or one quarter of a year), on Mars the seasons vary in length because of Mars' elliptical, egg-shaped orbit around the Sun.

Spring in the northern hemisphere (autumn in the southern) is the longest season at 194 sols. Autumn in the northern hemisphere (spring in the southern) is the shortest at 142 days. Northern winter/southern summer is 154 sols, and northern summer/southern winter is 178 sols.

Mars has two small moons, Phobos and Deimos , that may be captured asteroids. They're potato-shaped because they have too little mass for gravity to make them spherical.

The moons get their names from the horses that pulled the chariot of the Greek god of war, Ares.

Phobos, the innermost and larger moon, is heavily cratered, with deep grooves on its surface. It is slowly moving towards Mars and will crash into the planet or break apart in about 50 million years.

Deimos is about half as big as Phobos and orbits two and a half times farther away from Mars. Oddly-shaped Deimos is covered in loose dirt that often fills the craters on its surface, making it appear smoother than pockmarked Phobos.

Go farther. Explore the Moons of Mars ›

Mars has no rings. However, in 50 million years when Phobos crashes into Mars or breaks apart, it could create a dusty ring around the Red Planet.

When the solar system settled into its current layout about 4.5 billion years ago, Mars formed when gravity pulled swirling gas and dust in to become the fourth planet from the Sun. Mars is about half the size of Earth, and like its fellow terrestrial planets, it has a central core, a rocky mantle, and a solid crust.

Mars has a dense core at its center between 930 and 1,300 miles (1,500 to 2,100 kilometers) in radius. It's made of iron, nickel, and sulfur. Surrounding the core is a rocky mantle between 770 and 1,170 miles (1,240 to 1,880 kilometers) thick, and above that, a crust made of iron, magnesium, aluminum, calcium, and potassium. This crust is between 6 and 30 miles (10 to 50 kilometers) deep.

The Red Planet is actually many colors. At the surface, we see colors such as brown, gold, and tan. The reason Mars looks reddish is due to oxidization – or rusting – of iron in the rocks, regolith (Martian “soil”), and dust of Mars. This dust gets kicked up into the atmosphere and from a distance makes the planet appear mostly red.

Interestingly, while Mars is about half the diameter of Earth, its surface has nearly the same area as Earth’s dry land. Its volcanoes, impact craters, crustal movement, and atmospheric conditions such as dust storms have altered the landscape of Mars over many years, creating some of the solar system's most interesting topographical features.

A large canyon system called Valles Marineris is long enough to stretch from California to New York – more than 3,000 miles (4,800 kilometers). This Martian canyon is 200 miles (320 kilometers) at its widest and 4.3 miles (7 kilometers) at its deepest. That's about 10 times the size of Earth's Grand Canyon .

Mars is home to the largest volcano in the solar system, Olympus Mons. It's three times taller than Earth's Mt. Everest with a base the size of the state of New Mexico.

Mars appears to have had a watery past, with ancient river valley networks, deltas, and lakebeds, as well as rocks and minerals on the surface that could only have formed in liquid water. Some features suggest that Mars experienced huge floods about 3.5 billion years ago.

There is water on Mars today, but the Martian atmosphere is too thin for liquid water to exist for long on the surface. Today, water on Mars is found in the form of water-ice just under the surface in the polar regions as well as in briny (salty) water, which seasonally flows down some hillsides and crater walls.

Mars has a thin atmosphere made up mostly of carbon dioxide, nitrogen, and argon gases. To our eyes, the sky would be hazy and red because of suspended dust instead of the familiar blue tint we see on Earth. Mars' sparse atmosphere doesn't offer much protection from impacts by such objects as meteorites, asteroids, and comets.

The temperature on Mars can be as high as 70 degrees Fahrenheit (20 degrees Celsius) or as low as about -225 degrees Fahrenheit (-153 degrees Celsius). And because the atmosphere is so thin, heat from the Sun easily escapes this planet. If you were to stand on the surface of Mars on the equator at noon, it would feel like spring at your feet (75 degrees Fahrenheit or 24 degrees Celsius) and winter at your head (32 degrees Fahrenheit or 0 degrees Celsius).

Occasionally, winds on Mars are strong enough to create dust storms that cover much of the planet. After such storms, it can be months before all of the dust settles.

Magnetosphere

Mars has no global magnetic field today, but areas of the Martian crust in the southern hemisphere are highly magnetized, indicating traces of a magnetic field from 4 billion years ago.​

Mars - JPL Travel Poster

mars travel nasa

NASA's Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. Missions like Mars Pathfinder, Mars Exploration Rovers, Mars Science Laboratory and Mars Reconnaissance Orbiter, among many others, have provided important information in understanding of the habitability of Mars. This poster imagines a future day when we have achieved our vision of human exploration of Mars and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”

Visions of the Future Poster Series

SpaceX's Mars Colony Plan: By the Numbers

SpaceX's ITS Launching Mission to Mars

On Tuesday (Sept. 27), SpaceX founder and CEO Elon Musk unveiled the company's plans for colonizing Mars.

SpaceX aims to help establish a permanent, self-sustaining city on the Red Planet using the company's proposed Interplanetary Transport System (ITS), which will pair the most powerful rocket ever built with a big, crew-carrying spaceship, Musk said.

Here's a look at the ITS, and SpaceX's broader Red Planet plans, by the numbers. [ SpaceX's Interplanetary Transport for Mars in Images ]

A cutaway look at SpaceX's Interplanetary Transport System spaceship to ferry humans to Mars and beyond.

10 billion: The amount, in dollars, that it would cost per seat to send people to Mars using currently available technology, according to Musk. He said the ITS could lower that ticket price to $200,000, and perhaps all the way down to $100,000. ($10 billion is also the total amount that SpaceX expects to spend on its Mars-colonization efforts in the coming years.)

1 million: The number of people SpaceX hopes to transport to Mars using the ITS over the next 50 to 100 years.

13,033: Liftoff thrust, in tons, that the ITS booster will generate. That's 3.6 times more thrust than NASA's iconic Saturn V moon rocket — the most powerful booster ever to fly — was able to produce, Musk said.

2024: The year in which ITS could begin crewed flights to Mars, if everything goes perfectly. But SpaceX's first Red Planet mission should come sooner; the company aims to launch one of its uncrewed Dragon capsules toward Mars in 2018, to test out technology ahead of the human missions. This " Red Dragon " mission will use SpaceX's Falcon Heavy rocket, not the ITS booster.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

SpaceX also plans to mount Mars missions every 26 months after Red Dragon takes off, regardless of when ITS comes online, to establish a regular cargo route that takes scientific experiments to the Red Planet. (Earth and Mars align favorably, allowing interplanetary missions, just once every 26 months.)

1,000: The minimum number of ships SpaceX aims to send to Mars at every opportunity, once the ITS is fully up and running.

400: The height of the stacked ITS duo, in feet (equivalent to 122 meters). The Saturn V topped out at 365 feet (111 m). Separately, the ITS booster and the interplanetary ship that launches atop it will be 254 feet (77 m) and 162 feet (50 m) tall, respectively.

300: The amount, in tons, that the reusable ITS booster will be able to launch to low Earth orbit (LEO). The Saturn V could loft 135 tons to LEO, Musk said. (An expendable version of the ITS would have a 550-ton LEO capacity, he added, but SpaceX's Mars-colonization architecture calls for repeated reuse of the ITS booster and spaceship.)

115: The initial average length, in days, of the trip from Earth to Mars aboard the ITS ship. These ships would be launched to Earth orbit atop the ITS booster and then zoom to Mars under their power when the time was right. The trip could be as short as 80 days depending on exactly where Earth and Mars were at the time of departure, said Musk, who added that he envisions eventually slashing the trip time to just 30 days or so.

100: The minimum number of passengers carried aboard each ITS ship, meaning it could take 10,000 flights to get 1 million people to Mars. But the ships may end up transporting about 200 people apiece, Musk said.

51: The total number of Raptor engines used by each ITS stack. The rocket will carry 42 Raptors, while nine will power the ship. (Raptor, the next-generation engine SpaceX is developing, is about the same size as the company's workhorse Merlin engine but three times more powerful, Musk said.)

20: The maximum amount of time, in minutes, between the launch and landing of each ITS booster. These rockets will touch down softly at their launchpad — currently envisioned to be Launch Pad 39A at NASA's Kennedy Space Center in Florida — and will be quickly readied for another liftoff.

12: Number of people who have set foot on a world beyond Earth to date. All 12, of course, were Apollo astronauts who walked on the moon between 1969 and 1972.

Follow Mike Wall on Twitter  @michaeldwall  and  Google+ . Follow us @Spacedotcom , Facebook  or Google+ . Originally published on  Space.com .

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Mike Wall

Michael Wall is a Senior Space Writer with  Space.com  and joined the team in 2010. He primarily covers exoplanets, spaceflight and military space, but has been known to dabble in the space art beat. His book about the search for alien life, "Out There," was published on Nov. 13, 2018. Before becoming a science writer, Michael worked as a herpetologist and wildlife biologist. He has a Ph.D. in evolutionary biology from the University of Sydney, Australia, a bachelor's degree from the University of Arizona, and a graduate certificate in science writing from the University of California, Santa Cruz. To find out what his latest project is, you can follow Michael on Twitter.

Building rockets and looking for life on Venus: Q&A with Rocket Lab's Peter Beck

SpaceX launches 23 Starlink satellites, aces 300th rocket landing (photos, video)

Boeing's Starliner spacecraft is 'go' for May 6 astronaut launch

Most Popular

  • 2 Russian cosmonauts make quick work of space station spacewalk
  • 3 Curiosity rover may be 'burping' methane out of Mars' subsurface
  • 4 Boeing Starliner 1st astronaut flight: Live updates
  • 5 Lego reveals NASA Artemis rocket, Milky Way galaxy sets coming in May

mars travel nasa

An illustration of a dome-shaped simulation habitat on the surface of Mars

When a Mars Simulation Goes Wrong

A recent mission atop a Hawaiian volcano shows humans still have much to learn before they set foot on another world.

T he drive to the little white dome on the northern slope of Mauna Loa is a bumpy one. Mauna Loa, the “Long Mountain,” is a colossal volcano that covers half of the island of Hawaii. The rocky terrain, rusty brown and deep red, crunches beneath car tires and jostles passengers. Up there, more than 8,000 feet above sea level and many miles away from the sounds of civilization, it doesn’t feel like Earth. It feels like another planet. Like Mars.

For the past five years, small groups of people have made this drive and moved into the dome, known as a habitat. Their job is to pretend that they really are on Mars, and then spend months living like it. The goal, for the researchers who send them there, is to figure out how human beings would do on a mission to the real thing.

In February of this year, the latest batch of pioneers, a crew of four, made the journey up the mountain. They settled in for an eight-month stay. Four days later, one of them was taken away on a stretcher and hospitalized.

The remaining crew members were evacuated by mission support. All four eventually returned to the habitat, not to continue their mission, but to pack up their stuff. Their simulation was over for good. The little white dome has remained empty since, and the University of Hawaii, which runs the program, and NASA , which funds it, are investigating the incident that derailed the mission.

T he mission that began in February was the sixth iteration of the Hawaii Space Exploration Analog and Simulation, or HI-SEAS . The durations have varied, from four months to a full year, and participants come from all over the world and different fields.

H I-SEAS is a social experiment, and the participants are the lab rats. They wear devices to track their vitals, movements, and sleep, answer countless questionnaires about their own behavior and their interactions with others, and journal several times a week about their feelings.

Psychology researchers take all that data and use them to tease out information about what works and what doesn’t when you stick people in a tiny space they can’t escape. (Hint: They get on each other’s nerves—a lot—as documented in a recent podcast series, The Habitat . There’s also a little romance.)

Meanwhile, the crew members live as much as possible like they are on Mars. They eat freeze-dried food, use a composting toilet, take 30-second showers to conserve water, and never step outside without a space suit and helmet. They don’t communicate with anyone in real time, not even family. An email to mission support or their loved ones takes 20 minutes to get there. Receiving a response takes another 20 minutes. They’re not allowed to see anyone outside of the mission.

The habitat is a tight squeeze. The ground floor, which includes a kitchen, bathroom, a lab, and exercise spaces, measures 993 square feet. The second floor, where the bedrooms are, spans 424 square feet.

“You really do get the sense, when you’re going to sleep and you’re closing your eyes at night, that this could be a distant planet,” says Ross Lockwood, a physicist from Edmonton, Canada, and one of the members of mission two. “This could be Mars.”

But sometimes, Earth finds a way of sneaking in, of breaking the fuzzy boundary between simulation and reality.

Mission six arrived at the habitat on February 15. The crew waved goodbye to the researchers gathered outside the dome, felt the breeze on their faces for the last time for a long time, and piled in. The doors closed. Michaela Musilova, one of the crew members, described their first moments in an interview in April with The Cosmic Shed , a science podcast. (Musilova declined an interview with The Atlantic .)

Recommended Reading

mars travel nasa

Supper Club on Mars

NASA's Human Exploration Research Analog habitat inside a warehouse

The Asteroid Mission That Never Leaves Earth

mars travel nasa

Will Living on Mars Drive Us Crazy?

“Our commander cited part of [the 2011 novel] The Martian . I think it was the very first line of The Martian , like, ‘Oh, we’re fucked now,’ or something along those lines,” recalled Musilova, an astrobiologist from Slovakia. “And so we just gave each other a big hug and like, ‘Okay, we can do this.’”

The first few days were cloudy, which can be a problem on the volcano. The habitat and its systems run on a battery bank that is charged each day through a large solar array on the grounds. On cloudy or rainy days, it can be difficult for the batteries to bounce back. When this happens, the crew is supposed to suit up, go outside, and turn on a car-size backup generator that runs on propane.

“We really make it as primitive as some farm in Vermont,” says Bill Wiecking, the HI-SEAS tech-support lead and the energy-lab director at the Hawaii Preparatory Academy. Mission support receives text-message alerts when the habitat’s life-sustaining systems reach dangerous levels, but for the most part, it’s up to the crew to manage their use.

As stubborn clouds hung over the habitat, the crew tried to minimize their energy use. They dimmed most of the lights, kept kitchen appliances unplugged, and stayed off the treadmill.

On the morning of February 19, Lisa Stojanovski, a science communicator from Australia, woke up to find that the power in the habitat had gone out. “We must have used too much power, I guess,” she told me.

Stojanovski and another crew member initiated the procedures for leaving the habitat. They shimmied into their space suits, stepped outside, and headed for the backup propane generator, located nearby on the grounds. Stojanovski and her partner would flip a switch to bring the generator to life, while the two other crew members would flip a switch on a circuit breaker inside the habitat. This maneuver would shift the power source from the dead batteries over to the generator, Stojanovski said.

When it was done, Stojanovski came back inside. “I was elated that we were on track to solve the problem, and I was pretty bouncy and excited,” she said. “It was a little jarring at first, when the two crew members who were inside didn’t quite share the excitement. That was my first gut feeling that something was not quite right.”

One of the crew members was typing furiously at a computer. The other looked stricken, pale. They said they didn’t feel well.

They said they had sustained an electric shock.

Nothing like this had ever happened before inside the habitat. Kim Binsted, the HI-SEAS principal investigator and a professor at the University of Hawaii, told me that injuries during previous missions ranged from bruises and scrapes, acquired during treks across the rocky landscape, to “household accidents.” “The kinds of things that you can hurt yourself doing at home are also the kinds of things that you can hurt yourself doing at the hab,” Binsted said.

Stojanovski said she suspects the electric shock may have occurred because the crew member’s fingers brushed against live wiring. “In a regular household circuit breaker, you have a safety panel that covers all the live wiring that’s behind the switches,” Stojanovski said. “Unfortunately, our circuit breaker didn’t have one of those.”

The injured crew member was shivering. They lay down on the floor. The others covered them in blankets.

The crew placed several calls to the mission’s on-call doctor on an emergency cellphone in the habitat, which works in real time, but there was no answer.

The person designated as the crew commander then called 911 on the emergency line. The crew wasn’t supposed to have contact with people outside of the habitat. If first responders came to the dome, the simulation would be compromised. Stojanovski said the commander told her he wasn’t calling to summon an ambulance, but only to ask for medical advice. This took her aback. Stojanovski believed they needed an ambulance, and they needed it now.

The crew commander, Sukjin Han, an assistant professor of economics at the University of Texas at Austin from South Korea, told me he signed off on most of the important decisions during the mission, but that he made sure to “hear the thoughts and opinions of all crew members beforehand and reflect them in the decisions.” In the tense moments after the accident, Han went with the majority.

“The majority of the members—including the member who experienced the incident—decided that we [wanted] to ask for medical advice from 911, before asking for an ambulance. I don’t remember if Lisa had the same opinion but I do remember that she never objected to the plan,” Han said. “I have never thought and don’t think that maintaining the simulation is more important than the safety of the crew.”

During their training, HI-SEAS crew are told often that their well-being comes first. Safety is paramount. But so is maintaining the simulation. No one involved in HI-SEAS wants to jeopardize the data by breaking the sim, as they sometimes call it. They don’t want to give up before it’s over, either. Leaving the habitat would mean throwing away hours and hours of physical, social, and emotional investment. For participants who came from outside of the United States, it even means visa troubles.

“We all left our regular lives, quit our jobs in some cases, left our loved ones to go spend eight months doing this,” said Laura Lark, a software developer in New York who participated in mission five. “So we’re all pretty committed to getting high-quality data out of it.”

The thought of abandoning the simulation becomes more painful the longer the mission goes on. The crew members of mission six were faced with this dilemma just four days in. What if it were four months?

In one of the early missions, a crew member unwittingly turned on an internet access point that interfered with the HI-SEAS network, causing a communications blackout between the mountain and mission support. Wiecking had to go up the mountain to fix it, a move that could have jeopardized the integrity of the crew’s isolation. As Wiecking fiddled quietly with hardware a few feet from the dome, he could hear the voices of the crew through the tentlike walls. “That was so close to breaking the simulation, we had to have a big review over it,” he said.

During Lockwood’s mission, the second mission of the HI-SEAS project, a crew member decided to withdraw because of a chronic medical issue. “We struggled with the idea of what we would do if we really were on Mars,” Lockwood said. They decided to pretend that the crew member died. They imagined that they would leave his corpse out in the Martian atmosphere, where it would not decompose as it would on Earth , in the hopes of bringing it back to Earth for burial.

And they actually acted this all out. Lockwood said they had the departing crew member step into the vestibule that separates the habitat from the outside, the simulated “airlock.” The person stood there for five minutes, as they all would do before doing an extravehicular activity (EVA), and waited, pretending the airlock was depressurizing, evening out the pressure inside and outside, so they could safely exit. Then the crew member opened the door and walked outside, where mission support staff picked them up and took them down the mountain.

This time, in mission six, the danger was real. As the crew tried to figure out what to do, Stojanovski started to get worried about the injured crew member. “They were going downhill,” she said. “They had a tight chest and some pain behind the shoulder blades. I’m not a doctor or anything like that, but those kinds of symptoms freaked me out a little bit. I was pretty worried that they were going to have a heart attack or something.” The crew had received first-aid training, but the situation seemed to require more than that.

She called Binsted, the HI-SEAS principal investigator, and told her what happened. No one could reach the on-call doctor. Stojanovski said Binsted told the crew to call 911 again. This time, they asked for an ambulance.

“Throughout all our training, we’d been told, ‘Don’t worry, emergency services knows where you are, they know who you are, and they know how to get to you,’” Stojanovski said. “I was like, ‘My name’s Lisa, I’m from the HI-SEAS project, we would like an ambulance please, this is where we are.’ And they were like, ‘You’re from what project? Where are you located?’”

Stojanovski’s call to 911 had been picked up by Hawaii County dispatchers, but help would arrive from elsewhere.

The Pohakuloa Training Area is a U.S. Army base of several hundred people, located less than 15 miles from the habitat. Its jurisdiction stretches from Mauna Loa to Mauna Kea—and the HI-SEAS habitat sits nearly in the middle. Like the habitat, Pohakuloa is isolated from the rest of the world. The remoteness requires the military base to operate like a city, complete with a fire department and EMTs.

“We got the call that morning that there was a potential electrocution, that the individual was awake and conscious, but [they were] breathing heavily and [they] needed to be checked out,” says Eric Moller, the fire chief of the Pohakuloa Training Area, about the call from Hawaii County. “They were afraid about hypertension, elevated blood pressure.” The Army base dispatched an ambulance carrying four responders.

On a clear day, the drive from the base to the habitat takes 35 to 45 minutes. According to a response report from Pohakuloa obtained by The Atlantic , the drive took 43 minutes on February 19. Inside the habitat, the minutes seemed to drag like hours. At one point, Stojanovski said one of the responders called the habitat to say they were lost.

Moller said Pohakuloa’s fire captain phoned the habitat because responders were concerned about the conditions of the roads, which are unpaved, but they weren’t lost. When they reached a gate along the route to the habitat, they found that the lock was jammed. This added to their response time.

“Our guys go up and down that mountain all the time,” says Gregory Fleming, Pohakuloa’s deputy garrison commander, often to rescue lost hikers in flip-flops. And military staff know not to disturb their neighbors, the fake astronauts. They have been advised that any interaction risks wrecking their delicate reality.

When the crew finally heard tires grinding over rock outside, Stojanovski turned toward the exit, ready to greet the first responders. Han stopped her, she said, warning that whatever happened next would break the simulation. “I actually lost my temper at this point,” Stojanovski said. “I don’t remember exactly what I said, but there were some curse words involved.”

Han said he remembers Stojanovski moving quickly to the door. “I correctly remember that at least two of the members, including myself, called her name, almost simultaneously,” he said. “At least for myself, it was partly in order to calm her down, because she has suddenly become very emotional at that very moment, and give [her] at least one second to think about her reaction.”

Stojanovski could have ignored the others. H I-SEAS participants receive specific roles, like commander or communications specialist or health officer, but compliance is not compulsory as it would be, for example, in a military mission. “They have to fulfill those roles, but ultimately as they come together as a team, that’s something the crew have to figure out on their own,” says Joseph Gruber, the mission-support coordinator for HI-SEAS , and one of the people who regularly communicates with crews over email. “There’s structures in place and we give them guidelines on how best to do this, but it’s up to them. They’re the ones up there.”

Stojanovski decided to heed Han’s request. She didn’t go outside.

Stojanovski opened the door and waved the first responders into habitat. They loaded the injured crew member into the ambulance and checked their vitals. The ambulance drove down the volcano as far it could go; after about 20 miles, the vehicle neared the edge of Pohakuloa’s jurisdiction, a line the first responders aren’t allowed to cross. If they travel beyond this region, the reasoning goes, they leave the Pohakuloa residents at risk.

A hospital ambulance met the Pohakuloa ambulance at this edge, grabbed the crew member, and sped toward Hilo Medical Center, about 30 miles east of the habitat.

“It was really surreal when the ambulance drove away and there was kind of just silence,” Stojanovski recalled. “Like, wow, what just happened?”

B ack at their training base, a house in Kona, Stojanovski compiled a list of safety concerns about the habitat and sent it to Binsted, who confirmed she received it. Binsted wanted to continue the mission after getting approval from the university and NASA . Stojanovski said she did too, but only after mission support addressed her concerns and implemented some fixes.

Stojanovski sought some reassurance, but Binsted couldn’t make any guarantees, at least not before an investigation. “I kind of sat there and thought, You know what? I’m not okay with this ,” Stojanovski said. “I’m not okay with the culture and the attitude toward safety.” Now that she was off the mountain and out of the bubble, her perception of the mission changed. She decided to withdraw from it altogether.

Binsted, the principal investigator, said she could not discuss the specifics of the incident until the institutional review boards, one at the University of Hawaii and one at NASA , concluded their investigations and issued reports and recommendations.

Musilova, Han, and the fourth crew member, Calum Hervieu, an astrophysicist and systems engineer from Scotland, declined extensive interviews but provided The Atlantic with a joint statement, saying, in part, “We prefer not to discuss this topic with the media” until the University of Hawaii and NASA complete their reviews. They point to press releases from February , which say only that a crew member was hospitalized, treated at the hospital for a few hours, and then released.

Stojanovski said mission support was understanding and professional about her decision. Her fellow crew members were shocked and tried to persuade her to stay. If Stojanovski left, they all had to. H I-SEAS protocol prohibits a crew smaller than four, which produces fewer data for the researchers. There’s also the matter of maintaining the habitat and its various systems—power, water, food, the toilet—which requires several sets of hands.

They couldn’t replace Stojanovski with a backup, either; HI-SEAS missions are set up to investigate the evolution of one particular crew over time, and besides, finding someone willing to fly out to Hawaii for an eight-month mission on such short notice would be difficult.

Every HI-SEAS mission since the first one in 2013 has had a crew of six. Mission six started out that way, too, but two people were removed from the program, one of them just days before she said she was scheduled to fly from Australia to Hawaii. Binsted said she couldn’t comment on why mission six went ahead with four.

Brian Shiro, a geophysicist at the U.S. Geological Survey’s Hawaiian Volcano Observatory, who has worked on HI-SEAS since its inception, told me staff deliberated about whether to move forward with a smaller crew. “At any point along this timeline, there could have been a hard decision to delay the mission or cancel, but that’s not what they decided,” Shiro said. “I was on the side of the fence to delay. I didn’t want to start this mission because of the crew size. I said, ‘Guys, let’s find more people, let’s wait a few months at least.’ But I was overruled.”

He added: “This crew was very, very impressive, very professional, very motivated. But there were only four of them, and that left them vulnerable.”

During a real Mars mission, crew members will face a panoply of risks. People can, and probably will, get injured. They may die. Simulations like HI-SEAS attempt to forecast reactions to some of these threats, ranging from the things we cannot control, like the poisonous air outside, to those that we can only intuit, like the ideal way to organize a crew.

“We have things that we know we don’t know,” says Jenn Fogarty, the chief scientist at NASA ’s Human Research Program, the office that provides financial grants to HI-SEAS . “The ‘I don’t know what I don’t know’ is the scary space.”

Long before we send the first humans to Mars and keep them happy and healthy, we’ll have to figure out how to do that here—and it starts with deciding who should be on the mountain, which isn’t easy.

“You can select a crew all you want, get the right fit and mix, but there’s too many variables when it comes to human beings,” says Raphael Rose, the associate director of the Anxiety and Depression Research Center at UCLA, who was set to study stress management and resilience on mission six. “It’s just really hard to predict how we’re going to perform in all situations.”

M ission six arrived on Mauna Loa after the customary, rigorous application process that requires written essays, reference checks, Skype interviews, and, perhaps most important, the same kind of psychological screenings that NASA gives its astronauts. With each iteration of HI-SEAS , researchers and mission personnel learn a bit more about crew composition and what types of people work well together.

Steve Kozlowski, an organizational psychologist at Michigan State University who studies team effectiveness, says HI-SEAS finalists are scored on five personality traits, known in the field as the Big Five: extroversion, agreeableness, conscientiousness, neuroticism, and openness to experience. Kozlowski says they want conscientious people, but up to a point. Conscientiousness can veer toward passivity. Some degree of extroversion is valuable, until it’s too much. Outgoing people can morph into domineering people. In other words, it’s all about balance.

“There’s no magic formula,” Kozlowski says.

Psychological screenings can predict only so much. “Sometimes people look really good on paper and they might even interview well, but if there’s a big red flag on that screening, it gives one pause,” Shiro said. “There’ve been people we’ve ruled out because of that.”

During the mission, crews make regular trips outside of the habitat to explore the volcanic terrain in their space suits. To prepare them for this EVA, Shiro leads participants on excursions across the rugged landscape soon after they arrive in Hawaii. “Three days in the field in those conditions is a good way to get to know people,” he said. “There’s people that I think, Eh, I wonder how that one’s gonna do . Usually, that gut feeling, there’s something to it.”

A real mission to Mars would likely require crews to train together for months, maybe even years—far longer than the nine days of training that mission six had, Shiro said. Crew members would be put through a multitude of stressful situations to test their reactions. “You would tease out any red flags before you even left Earth,” Shiro said.

Shiro said one of his gut feelings kicked in during the fieldwork training for mission six. “There was this one person who was not as comfortable in the field,” he said. “That’s the sort of thing you don’t know until you get out there. Still did it, did all the training—a little slower, but did it all. But when the incident happened that ultimately led to the cancelation of the mission, that’s the person who quit. And it was not a surprise to any of us because we said, ‘Yeah, you know, she was a little more timid out there.’”

Stojanovski rebuffed Shiro’s assessment of her training. “I actually enjoyed being out in the field,” she said. “In fact, I was the first to volunteer to go outside on an emergency space walk on the morning of the incident.”

The HI-SEAS staff say the habitat is a safe environment.

“We’ve learned all the ways that you can kill yourself on Mars, and we’ve learned to prevent those things,” Wiecking says. “So it’s been very, very valuable, because it’s way better to do it here, where you can drive up and go, ‘Oh gosh, a water valve opened up and now you don’t have any water.’ Instead of on Mars, where it’s like, ‘You don’t have any water, you guys are gonna die in a couple of days.’”

Round-trip communication between Earth and Mars will take about 40 minutes. Astronauts won’t have the luxury of sitting around and waiting for commands or approval from Earth. H I-SEAS has mission support , rather than mission control , for that reason. The first astronauts on Mars will choose for themselves, for the most part, how they will live and work. In case of an emergency, they will need to decide what to do. And there’s no guarantee the astronauts won’t choose to take matters into their own hands.

“That’s the complexity of humans. They are going to do things on their own, maybe outside of the mission rules. They are going to try to make things work on their own, and they’re inventive and smart, and that’s the reason you picked this crew,” Fogarty says. “So thinking you can keep them in this tight little box of emotions is unrealistic.”

The potential cracks in the relationship between crew and mission support are already showing. Last year, when Hurricane Harvey struck Texas and forced the displacement of thousands, NASA staff decided to evacuate the members of a space simulation in Houston. For several weeks, a crew of four lives and works inside a cozy fake spaceship at the Johnson Space Center, pretending they’re coasting toward an asteroid.

“When we woke them up that Sunday morning and told them to pack up, that we were terminating the mission, they were not happy with us,” says Lisa Spence, the flight-analog project manager for the program, known as the Human Exploration Research Analog ( HERA ).

“One of them was pretty upset and not very complimentary and [asked us], ‘Why are you doing this? There’s no problem here, we want to continue.’ It wasn’t until the vehicle came and evacuated them and took them to the hotel, and they could see cars stranded all over the place, and boats that had been washed up onto the streets, and several feet of water across the roads—then they kind of appreciated why we stopped.”

The mission support at HERA had better information than the crew did, and because they sit in the same warehouse, just 20 feet away from the “spaceship,” they could make a decision for the crew. That won’t be possible on Mars. If the crew goes rogue, the people back on Earth might have no idea. Some degree of eavesdropping on the crew might be necessary, according to Sonja Schmer-Galunder, a researcher at Smart Information Flow Technologies, whose work on HI-SEAS was aimed at developing ways to predict the behavioral health of individuals and the team.

“I’m not the person to decide where the limits of their privacy are, and clearly you have to be able to withdraw and also have your private space. Is it ethical?” Schmer-Galunder says. “I mean, if people are signing up to go to Mars, I think everything should and must be done in order to bring the crew back safe. When you’re signing up for a Mars mission, you know that you’re giving yourself away in almost every aspect of your life. You become a tool that is being sent out there.”

T he HI-SEAS program is now on hold until the University of Hawaii and NASA complete their separate reviews. Fogarty, of NASA ’s Human Research Program, is supportive of Binsted and the project. Fogarty says it’s possible that the university and the space agency could come to different conclusions about the incident, which could determine the future of the HI-SEAS project.

“In the future, NASA may not participate in it if we don’t feel that our safety threshold for participants is met,” Fogarty says.

H I-SEAS , which is run mostly by volunteers, could continue on its own. But NASA ’s withdrawal would be detrimental to the agency, which doesn’t have any similar Mars simulations. The longest run of HERA , the asteroid analog, was just 45 days.

Stojanovski returned to Australia soon after the mission ended. She had resigned from a job on the communications team at Rocket Lab, a U.S. spaceflight company with a subsidiary based in New Zealand, after finding out she had been selected for the HI-SEAS program. When she withdrew from the mission, the job had already been filled. She worked at a fish market for a few months when she came home. She recently found another role at Rocket Lab, as an executive assistant, and moved to Auckland in May.

According to their personal websites, Musilova and Hervieu have found work at the Canada-France-Hawaii Telescope, located near the summit of Mauna Kea, less than 40 miles north of the habitat. “I’ve been saying c’est la vie quite a lot recently, and that’s really how it is,” Musilova said in the Cosmic Shed interview. “Life happens.” Han is still listed as a professor at the University of Texas at Austin.

Stojanovski has stayed in some touch with Binsted and Musilova. She hasn’t spoken with Hervieu or Han.

Several months removed from that February morning, Stojanovski said she wishes her crew’s panicked discussions had gone differently.

“I really regret that I followed orders that were not in the spirit of crew health and safety, just for the sake of keeping the mission within the simulation,” she said.

I asked Stojanovski whether she regrets withdrawing from the mission. She said it was a hard decision. But no, she doesn’t.

“In a way, I am kind of glad that this happened, because it’s been able to be a learning opportunity that exposes all the weak points in the system,” she said. “We can make the system strong so that people, when they do eventually get to Mars and they have a situation like this, they can be in a better position to tackle it. You’re increasing their chances of surviving something like this.”

Stojanovski remembers fondly the few days her crew had on the volcano before Earth came knocking on their door. It was cozy in that little white dome. One crew member had brought ping-pong paddles, so they cleared a table and started bouncing the ball back and forth, click, clack . Another came with an electronic keyboard and played classical compositions at night. Distinctly Earthly noises in a place that felt anything like home. They wafted around the habitat, pierced its thin walls, and drifted out into the silent expanse.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics.

  • Learning Resources

News & Events

Colorado River

NASA-Led Study Provides New Global Accounting of Earth’s Rivers

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Psyche spacecraft is shown in a clean room

NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

mars travel nasa

NASA Shares Lessons of Human Systems Integration with Industry

Most mountains on the Earth are formed as plates collide and the crust buckles. Not so for the Moon, where mountains are formed as a result of impacts as seen by NASA Lunar Reconnaissance Orbiter.

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

three men standing beside a small, black piece of space satellite hardware

NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Mars Science Laboratory: Curiosity Rover

Mars Science Laboratory: Curiosity Rover

Hubble Spots a Magnificent Barred Galaxy

Hubble Spots a Magnificent Barred Galaxy

The Crab Nebula, the result of a bright supernova explosion seen by Chinese and other astronomers in the year 1054, is 6,500 light-years from Earth. At its center is a neutron star, a super-dense star produced by the supernova. As it rotates at about 30 times per second, its beam of radiation passes over the Earth every orbit, like a cosmic lighthouse. As the young pulsar slows down, large amounts of energy are injected into its surroundings. In particular, a high-speed wind of matter and anti-matter particles plows into the surrounding nebula, creating a shock wave that forms the expanding ring seen in the movie. Jets from the poles of the pulsar spew X-ray emitting matter and antimatter particles in a direction perpendicular to the ring. This image show the X-ray data from Chandra along with infrared data from the Webb space telescope.

NASA’s Chandra Releases Doubleheader of Blockbuster Hits

Explore the Universe with the First E-Book from NASA’s Fermi

Explore the Universe with the First E-Book from NASA’s Fermi

Julia Chavez

NASA Grant Brings Students at Underserved Institutions to the Stars

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

mars travel nasa

NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

Swimming in water, A beaver family nibbles on aspen branches in Spawn Creek, Utah.

NASA Data Helps Beavers Build Back Streams

The PACE spacecraft sending data down over radio frequency links to an antenna on Earth. The science images shown are real photos from the PACE mission.

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

mars travel nasa

Washington State High Schooler Wins 2024 NASA Student Art Contest

mars travel nasa

NASA STEM Artemis Moon Trees

mars travel nasa

Kiyun Kim: From Intern to Accessibility Advocate

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Emma friedman, nasa communications intern.

A 12th grade artist with a passion for NASA and space took home the top prize for the 2024 NASA Student Art Contest, a nationwide competition hosted by NASA’s Langley Research Center in Hampton, Virginia.

Esther Lee, of Washington State, was selected as the grand prize winner for her submission “Beyond Imagination,” which depicts a young girl and her dog in a cardboard box exploring the universe. Lee said she was inspired by memories of her adventurous childhood.

mars travel nasa

“The underlying inspiration from this piece actually originates from childhood memories. As a kid, I used to sit down in cardboard moving boxes and shuffle along the carpet or wood floors, pretending that I was a pirate or adventurer on a ship exploring the vast unknowns,” Lee said. “Ultimately, I wanted my piece to capture that same childlike innocence and joy from all those years ago.”

Lee’s piece stood out among a crowded and creative field. This year’s theme, “Connecting the Dots”, encouraged K-12 students to explore innovative ideas about the intersection of science, technology, and art.

mars travel nasa

Art contest coordinator, Kristina Cors, said this year’s contest, which brought in more than 2000 entries, was one of the best. “The art contest received a record number of entries this year and the quality of the art was absolutely incredible. From the impressive skills of our winners to the joyful imagination of our youngest entries, each piece represented an excitement for exploration and creativity,” remarked Cors.

mars travel nasa

Lee’s victory is a product of years of continued efforts and inspirations, as well as a personal interest in NASA’s missions and space science. “I’ve been drawing on and off since elementary school. As I had more time during the pandemic, I had the opportunity to explore digital art more seriously. NASA and space have always been a huge inspiration for me,” she said.

mars travel nasa

Using the software Procreate on her iPad, Esther took her interpretation of the prompt “Connect the Dots” skyward by imagining a connection between dreams and reality. She said “Beyond Imagination” emerged from a personal philosophy. “As a child, your dreams could take you far beyond your ordinary world. Equipped with just a cardboard box, paper hat, and plushies, you could travel all the way up to space and beyond. Your future is only restricted by your imagination.”

To view this year’s contest submissions, click here .

Related Terms

  • Langley Research Center

Explore More

mars travel nasa

NASA Glenn Joins Big Hoopla STEM Challenge

mars travel nasa

NASA Mentors, Students Rock FIRST Buckeye Regional 

IMAGES

  1. Images from the Mars Perseverance Rover

    mars travel nasa

  2. These selfies of NASA's Mars helicopter with the Perseverance rover are

    mars travel nasa

  3. WATCH

    mars travel nasa

  4. Work Progresses Toward Ingenuity’s First Flight on Mars

    mars travel nasa

  5. Astronauts Study Rocks on Mars

    mars travel nasa

  6. The Journey to Mars!

    mars travel nasa

COMMENTS

  1. Humans to Mars

    One day on Mars lasts about 37 minutes longer than an Earth day. A year on Mars is almost twice as long as a year on Earth. Gravity on Mars is about one-third of the gravity on Earth. If you weigh 100 pounds on Earth, you would weigh 38 pounds on Mars. Mars has two moons: Phobos and Deimos.

  2. NASA's Perseverance Rover Is Midway to Mars

    Image Credit: NASA/JPL-Caltech. "Although we're halfway into the distance we need to travel to Mars, the rover is not halfway between the two worlds," Kangas explained. "In straight-line distance, Earth is 26.6 million miles [42.7 million kilometers] behind Perseverance and Mars is 17.9 million miles [28.8 million kilometers] in front.".

  3. Mars Mission Timeline

    Pre-launch Activities Preparation for the mission, including pre-project planning, science definition and instrument selection, landing site selection, assembly and testing, and delivery to the launch site. Launch Liftoff from Earth. Cruise: The Trip to Mars The interplanetary cruise phase is the period of travel from Earth to Mars and lasts about 200 days. The phase […]

  4. Mars Exploration

    NASA is reimagining the future of Mars exploration, driving new scientific discoveries, and preparing for humans on Mars. NASA's Mars Exploration Program will focus the next two decades on its science-driven systemic approach on these strategic goals: exploring for potential life, understanding the geology and climate of Mars, and preparation ...

  5. NASA has early plans to send astronauts to Mars for 30 days

    NASA aims to launch astronauts to Mars by the late 2030s or early 2040s. Making that vision a reality will be challenging. ... the round-trip travel time would still be about 500 days given the ...

  6. SpaceX

    LANDING ON MARS. Starship will enter Mars' atmosphere at 7.5 kilometers per second and decelerate aerodynamically. The vehicle's heat shield is designed to withstand multiple entries, but given that the vehicle is coming into Mars' atmosphere so hot, we still expect to see some ablation of the heat shield (similar to wear and tear on a brake pad).

  7. In Depth

    In Depth. Mars is no place for the faint-hearted. It's dry, rocky, and bitter cold. The fourth planet from the Sun, Mars is one of Earth's two closest planetary neighbors (Venus is the other). Mars is one of the easiest planets to spot in the night sky - it looks like a bright red point of light. Despite being inhospitable to humans ...

  8. Human mission to Mars

    Travel to Mars The minimum distance between the orbits of Mars and Earth from 2014 to 2061, measured in astronomical units. The energy needed for transfer between planetary orbits, or delta-v, is lowest at intervals fixed by the synodic period.For Earth-Mars trips, the period is every 26 months (2 years, 2 months), so missions are typically planned to coincide with one of these launch periods.

  9. Mars on Earth: NASA researchers will spend a year living in a ...

    CHAPEA -- Crew Health and Performance Exploration Analog -- is the latest series of Mars analog missions conducted by NASA. A simulation of life on the Martian surface, each of the three planned ...

  10. Mars

    Mars - JPL Travel Poster. NASA's Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. Missions like Mars Pathfinder, Mars Exploration Rovers, Mars Science Laboratory and Mars Reconnaissance Orbiter, among many others, have provided important information in understanding of the habitability of Mars.

  11. SpaceX's Mars Colony Plan: By the Numbers

    On Tuesday (Sept. 27), SpaceX founder and CEO Elon Musk unveiled the company's plans for colonizing Mars. SpaceX aims to help establish a permanent, self-sustaining city on the Red Planet using ...

  12. Expedition 50 Crew Members Tour Museum in Star City

    Human Space Travel Research; Aeronautics. Science in the Air; NASA Aircraft; ... NASA Selects New Crew for Next Simulated Mars Journey. article 4 days ago. Highlights. ... — Expedition 50 ESA astronaut Thomas Pesquet, left, Russian cosmonaut Oleg Novitskiy of Roscosmos, center, and NASA astronaut Peggy Whitson tour the museum at the Gagarin ...

  13. When a Mars Simulation Goes Wrong

    June 22, 2018. The drive to the little white dome on the northern slope of Mauna Loa is a bumpy one. Mauna Loa, the "Long Mountain," is a colossal volcano that covers half of the island of ...

  14. Washington State High Schooler Wins 2024 NASA Student Art Contest

    A 12th grade artist with a passion for NASA and space took home the top prize for the 2024 NASA Student Art Contest, a nationwide competition hosted by NASA's ... First NASA Mars Analog Crew Nears End of Mission. article 3 days ago. ... you could travel all the way up to space and beyond. Your future is only restricted by your imagination."